Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reaction potential map analysis of chemical reactivity—III

Site selectivity in SCN, OCN, NO 2 , and CH2CHO anions

Abstract

Reaction potential maps (RPM) have been introduced as a new tool for the study of molecular reactivity. The equipotential energy maps, which are created on given planes around a molecule, define reaction contours towards specific counter-reagent models and are evaluated by perturbation theory. Since the calculated interaction energy involves electrostatic, polarization, exchange, and charge transfer energies, the RPM's can be used to predict site selectivity in a variety of chemical reactions. We found that the calculated RPM's of the SCN anion explained well the experimental observations that it reacts at the S atom with soft electrophiles and at the N atom with hard electrophiles. The difference in reactivity between SCN and OCN was clearly shown by the RPM's of these anions. The ambident nucleophilic nature of the NO 2 and the CH2CHO anions was also well represented by their RPM's.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bonaccorsi, R., Scrocco, E., Tomasi, J.: J. Chem. Phys. 52, 5270 (1970)

  2. 2.

    Tomasi, J.: Quantum theory of chemical reactions, Daudel, R., Pullman, A., Salem, L., Veillard, A., eds. p. 191, and references cited therein. Dordrecht: Reidel 1980

  3. 3.

    Bonaccorsi, R., Pullman, A., Scrocco, E., Tomasi, J.: Theoret. Chim. Acta (Berl.) 24, 51 (1972)

  4. 4.

    Alagona, G., Pullman, A., Scrocco, E., Tomasi, J.: Int. J. Peptide Protein Res. 5, 251 (1973)

  5. 5.

    Bonaccorsi, R., Scrocco, E., Tomasi, J., Pullman, A.: Theoret. Chim. Acta (Berl.) 36, 339 (1975)

  6. 6.

    Alagona, G., Scrocco, E., Tomasi, J.: J. Am. Chem. Soc. 97, 6976 (1975)

  7. 7.

    Politzer, P., Daiker, K. C.: Int. J. Quantum Chem., Quant. Biol. Symp. 4, 317 (1977)

  8. 8.

    Perahia, D., Pullman, A.: Theoret. Chim. Acta (Berl.) 48, 263 (1978)

  9. 9.

    Hariharan, P. C., Kaufman, J., Petrongolo, C.: Int. J. Quantum Chem., Quant. Biol. Symp. 6, 224 (1979)

  10. 10.

    Cremaschi, P., Gamba, A., Simmonetta, M.: Theoret. Chim. Acta (Berl.) 40, 303 (1975)

  11. 11.

    Politzer, P., Donnelly, R. A., Daiker, C. K.: J. Chem. Soc. Chem. Comm. 617 (1973)

  12. 12.

    Politzer, P., Weinstein, H.: Tetrahedron 31, 915 (1975)

  13. 13.

    Bertran, J., Silla, E., Carbo, R., Martin, M.: Chem. Phys. Letters 31, 267 (1975)

  14. 14.

    Bonaccorsi, R., Scrocco, E., Tomasi, J.: Chemical and biochemical reactivity, Bergmann, E. D., Pullman, B., eds. p. 387. Jerusalem: Israel Acad. sci. & Humanities, 1974

  15. 15.

    Daudel, R., Le Rouzo, H., Cimiraglia, R., Tomasi, J.: Int. J. Quantum Chem. 13, 537 (1978)

  16. 16.

    Dreyfus, M., Pullman, A.: Theoret. Chim. Acta (Berl.) 19, 20 (1970)

  17. 17.

    Morokuma, K.: J. Chem. Phys. 55, 1236 (1971)

  18. 18.

    Bartlett, R. J., Weinstein, H.: Chem. Phys. Letters 30, 441 (1975)

  19. 19.

    Bertram, J., Silla, E., Fernandez-Alonso, J. I.: Tetrahedron 31, 1093 (1975)

  20. 20.

    Van der Neut, R. N.: Tetrahedron 31, 2547 (1975)

  21. 21.

    Weinstein, H., Chou, D., Kang, S., Johnson, C. L., Green, J. P.: Int. J. Quantum Chem., Quant. Biol. Symp. 3, 135 (1976)

  22. 22.

    Fukui, K., Yonezawa, T., Shingu, H.: J. Chem. Phys. 20, 722 (1952)

  23. 23.

    Hudson, H., Klopman, G.: Tetrahedron Letters 1103 (1967)

  24. 24.

    Klopman, G.: J. Am. Chem. Soc. 90, 273 (1968)

  25. 25.

    Salem, L.: J. Am. Chem. Soc. 90, 543 (1968)

  26. 26.

    Fujimoto, H., Fukui, K.: Chemical reactivity and reaction paths, Klopman, G. ed. p. 23. New York: Wiley, 1974

  27. 27.

    Klopman, G.: Chemical reactivity and reaction paths, p. 55. New York: Wiley, 1974

  28. 28.

    Murrell, J. N., Randic, M., Williams, D. R.: Proc. Roy. Soc. A284, 566 (1965)

  29. 29.

    Murrell, J. N., Shaw, G.: J. Chem. Phys. 46, 1768 (1967)

  30. 30.

    Nagase, S., Fueno, T.: Theor. Chim. Acta (Berl.) 35, 217 (1974)

  31. 31.

    Pople, J. A., Segal, G. A.: J. Chem. Phys. 44, 3289 (1966); Santry, D. P., J. Am. Chem. Soc. 90, 3309 (1968)

  32. 32.

    Klopman, G., Moriishi, H., Kikuchi, O., Suzuki, K.: Tetrahedron Letters 23, 1027 (1982)

  33. 33.

    Fleming, I.: Frontier orbitals and organic chemical reactions. New York: Wiley, 1976

  34. 34.

    Ho, T.: Hard and soft acids and bases principle in organic chemistry. New York: Academic Press, 1977

  35. 35.

    Stone, A. J., Erskine, R. W.: J. Am. Chem. Soc. 102, 7185 (1980)

  36. 36.

    Pearson, R. G.: J. Am. Chem. Soc. 85, 3533 (1963)

  37. 37.

    Löwdin, P. O.: J. Chem. Phys. 18, 365 (1950)

  38. 38.

    Mulliken, R. S.: J. Chim. Phys. 46, 521 (1949)

  39. 39.

    Roothaan, C. C. J., J. Chem. Phys. 19, 1445 (1951)

  40. 40.

    Lofthus, A.: Mol. Phys. 5, 105 (1962)

  41. 41.

    Bonaccorsi, R., Scrocco, E., Tomasi, J.: J. Am. Chem. Soc. 99, 4546 (1977)

  42. 42.

    Pearson, R. G., Songstad, J.: J. Am. Chem. Soc. 89, 1827 (1967)

  43. 43.

    Giles, D. E., Parker, A. J.: Aust. J. Chem. 26, 273 (1973)

  44. 44.

    March, J.: Advanced organic chemistry: Reaction mechanism and structure, p. 298. New York: McGraw-Hill, 1968

  45. 46.

    Hendrickson, J. A., Cram, D. J., Hammond, G. S.: Organic chemistry, p. 394, New York: McGraw-Hill, 1970

  46. 47.

    Kornblum, N., Smiley, R. A., Blackwood, R. K., Iffland, D. C.: J. Am. Chem. Soc. 77, 6269 (1955)

  47. 48.

    Guibè, F., Sarthou, P., Bram, G.: Tetrahedron 30, 3139 (1974)

  48. 49.

    Stewart, R. F.: J. Chem. Phys. 52, 431 (1970)

  49. 50.

    The energies of SCN and SCNH were calculated for their optimized structures

Download references

Author information

Correspondence to Osamu Kikuchi or Gilles Klopman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moriishi, H., Kikuchi, O., Suzuki, K. et al. Reaction potential map analysis of chemical reactivity—III. Theoret. Chim. Acta 64, 319–338 (1984). https://doi.org/10.1007/BF00548945

Download citation

Key words

  • Reaction potential map
  • Reactivity
  • Ambident anions
  • SCN
  • OCN
  • NO 2
  • CH2CHO