Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane of Saccharomyces cerevisiae

  • 28 Accesses

  • 11 Citations

This is a preview of subscription content, log in to check access.


  1. Aaronson, L.R., Hager, K.M., Davenport, J.W., Mandala, S.M., Chang, A., Speicher, D.W., Slayman, C.W. (1988) Biosynthesis of the plasma membrane H+-ATPase of Neurospora crassa. J. Biol. Chem. 263, 14552–14558

  2. Behrens, M.M. and Mazon, M.J. (1988) Yeast cAMP dependent protein kinase can be associated to the plasma membrane. Biochem. Biophys. Res. Commun. 151, 561–567

  3. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulein, J. and Lindquist, S. (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9, 3919–3930

  4. Boucherie, H. (1985) Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J. Bacteriol. 161, 385–392

  5. Boutelet, F., Petitjean, A. and Hilger, F. (1985) Yeast cdc35 mutants are defective in adenylate cyclase and are allelic with cyrl mutants while CAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J. 4, 2635–2641

  6. Brazzell, C. and Ingolia, T.D. (1984) Stimuli that induce a yeast heat shock gene fused to β-galactosidase. Mol. Cell. Biol. 4, 2573–2579

  7. Camonis, J.H., Kalekine, M., Gondre, B., Garreau, H., Boy-Marcotte, E. and Jacquet, M. (1986) Characterisation, cloning and sequence analysis of the CDC25 gene which controls the cAMP level of Saccharomyces cerevisiae. EMBO J. 5, 375–380

  8. Curran, B., Davies, M.W., Hirst, K., Seward K. and P.W. Piper (1988) Genes transcribed efficiently both before and after heat shock: their promoter operation and roles in stress protection. Yeast 4, S324

  9. Finley, D., Ozkaynak, E. and Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48, 1035–1046

  10. Francois, J., Eraso, P. and Gancedo, C. (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur. J. Biochem. 164, 369–373

  11. Goffeau, A. and Slayman, C.W. (1981) The proton translocating ATPase of the fungal plasma membrane. Biochim. Biophys. Acta. 639, 197–223

  12. Hirst, K.A. (1990) Studies on the yeast heat shock response. Ph.D. Dissertation. University of London.

  13. Iida, H. (1988) Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5′ coding region of the adenylate cyclase gene. Mol. Cell. Biol. 8, 5555–5560

  14. Iida, H. and Yahara, I. (1984) A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J. Cell Biol. 99, 1441–1450

  15. Latchman, D.S., Norton, P.M., Bansal, G.S. and Isenberg, D.A. (1990) Function and expression of the 90kD heat shock protein. In Stress Proteins and Inflammation, C. Rice-Evans, ed. (Richlieu Press) (in press)

  16. Lin, Y-S. and Green, M.R. (1989) Similarities between prokaryotic and eukaryotic cyclic AMP-responsive elements. Nature 340, 656–659

  17. Matsumoto, K., Uno, I. and Ishikawa, T. (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1, 15–24

  18. Mazon, M.J., Gancedo, J.M. and Gancedo, C. (1982) Phosphorylation and inactivation of yeast fructose bis-phosphatase in vivo by glucose and by proton ionophores. Eur. J. Biochem. 127, 605–608

  19. Munro, S. and Pelham, H.R.B. (1985) What turns on heat shock genes? Nature 317, 477–478

  20. Panaretou, B. and Piper, P.W. (1990) Plasma membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response. J.Gen.Microbiol. (in press)

  21. Piper, P.W., B. Curran, M.W. Davies, K. Hirst, A. Lockheart, J.E. Ogden, C. Stanway, A.J. Kingsman and S.M. Kingsman (1988) A heat shock element within the phosphoglycerate kinase gene promoter of Saccharomyces cerevisiae. Nucl. Acids Res. 16, 1333–1348

  22. Praekelt, U. and Meacock, P.A. (1990) HSP12, a new small heat shock protein gene of yeast. Mol. Gen. Genet. (in press)

  23. Serrano, R. (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 156, 11–14

  24. Shin, D-Y., Matsumoto, K., Iida, H., Uno, I. and Ishikawa, T. (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cAMP-dependent protein phosphorylation. Mol. Cell. Biol. 7, 244–250

  25. Sorger, P.K. and Pelham, H.R.B. (1987) Purification and characterisation of a heat-shock element binding protein from yeast. EMBO J. 6, 3035–3041

  26. Tanaka, K., Matsumoto, K. and Tohe, A. (1988) Dual regulation of the expression of the polyubiquitin gene by cAMP and heat shock in yeast. EMBO J. 7, 495–499

  27. Ulazewski, S., Grenson, M. and Goffeau, A. (1983) Modified plasma membrane ATPase in mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 130, 235–239

  28. Ulazewski, S., VanHerck, J.C., Dufour, J.P., Kulpa, J., Nieuwenhuis, B. and Goffeau, A. (1987) A single mutation confers vanadate resistance to the plasma membrane H+-ATPase from the yeast Schizosaccharomyces pombe. J. Biol. Chem. 262, 223–228

  29. Weitzel, G., Pilatus, U. and Rensing, L. (1987) The cytoplasmic pH, ATP content and total protein synthesis during heat shock protein inducing treatments in yeasts. Exptl. Cell. Res. 170, 64–79

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piper, P. Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane of Saccharomyces cerevisiae . Antonie van Leeuwenhoek 58, 195–201 (1990). https://doi.org/10.1007/BF00548933

Download citation


  • Plasma Membrane
  • Heat Shock
  • Gene Activation
  • Shock Gene
  • Heat Shock Gene