Journal of Materials Science

, Volume 12, Issue 4, pp 708–717

The mechanism of reinforcement of polyurethane foam by high-modulus chopped fibres

  • T. C. Cotgreave
  • J. B. Shortall
Papers

Abstract

The morphology and fracture behaviour of polyurethane foams reinforced by short chopped fibres have been investigated. The presence of the fibres is shown to give rise to localized change in the foam morphology and the extent of this depends upon the fibre bundle size which is affected by the surface treatment. The changes in morphology are correlated with changes in the tensile properties of the foams at ambient and cryogenic temperatures. The systems are shown to be matrix limited with failure occurring remote from the interface which assumes a poassive role during tensile fracture. A critical fibre length for reinforcement of polyurethane foam, which depends on matrix shear strength and foam density, is defined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. C. Frisch and J. H. Saunders, eds., “Plastic foams”, Parts 1 and 2 (Marcel Decker, New York, 1972 and 1973).Google Scholar
  2. 2.
    R. H. Hardin, “Resinography of cellular plastics”, edited by E. Blair, ASTM publ. STP 414 (1967).Google Scholar
  3. 3.
    P. J. Phillips and N. R. Waterman, Polymer Eng. Sci. 14 (1974) 67.Google Scholar
  4. 4.
    N. R. Waterman and P. J. Phillips, ibid 14 (1974) 72.Google Scholar
  5. 5.
    T. E. Neet, J. Cell. Plast. Jan/Feb (1975) 45.Google Scholar
  6. 6.
    G. Menges and F. Knipschild, Polym. Eng. Sci. 15 (1975) 623.Google Scholar
  7. 7.
    C. W. Fowlkes, Int. J. Fracture 10 (1974) 99.Google Scholar
  8. 8.
    W. Broy, J. Nicht and D. Trepte, Plaste. Kaut. 21 (1974) 37.Google Scholar
  9. 9.
    V. P. Cherpanov et al., Sov. Plastics 21 (1973) 6; Trans. ex Plast. Massy. 12 (1973) 9.Google Scholar
  10. 10.
    Idem, Plast. Massy. 5 (1974) 73.Google Scholar
  11. 11.
    Idem, Int. J. Polymer Sci. Tech. 2 (3) (1975) 4; Trans. ex Plast. Massy. 10 (1974) 60.Google Scholar
  12. 12.
    Idem, ibid 2 (9) (1975) 5; Trans. ex Plast. Massy. 1 (1975) 1.Google Scholar
  13. 13.
    G. Kuehne and O. Merker, Plaste. Kaut. 20 (1973) 39.Google Scholar
  14. 14.
    Anon, Mod. Plast. November (1969) 66.Google Scholar
  15. 15.
    P. Modigliani, 25th Annual Technical Conference (1970), Reinf. plast/comps. div. SPI Inc. Sec. 8-C.Google Scholar
  16. 16.
    T. Kawanka, Jap. Plast. Age July (1973) 24.Google Scholar
  17. 17.
    R. Kleinholz and A. Newmann, Kunstoffe 64 (1974) 742.Google Scholar
  18. 18.
    Mitsubishi Chemical Industries Ltd, UK Pat. No. 1 438 226 (June 1976).Google Scholar
  19. 19.
    NASA, U.S. Pat. No. 3, 916, 060 (October, 1975).Google Scholar
  20. 20.
    H. L. Cox, Brit. J. Appl. Phys. 3 (1952) 72.Google Scholar
  21. 21.
    J. Cook and J. E. Gordon, Proc. Roy. Soc. A282 (1964) 508.Google Scholar
  22. 22.
    A. Kelly, ibid A319 (1970) 95.Google Scholar
  23. 23.
    N. G. McCrum, ed., “A review of the science of reinforced plastics” (HMSO, London, 1971) p. 85.Google Scholar
  24. 24.
    H. W. C. Yip and J. B. Shortall, J. Adhesion 7 (1976) 311.Google Scholar
  25. 25.
    J. B. Shortall and H. W. C. Yip, Faraday Spec. Dis. Chem. Soc. 2 (1972).Google Scholar
  26. 26.
    Courtaulds Ltd, “Graphil” data sheet.Google Scholar
  27. 27.
    R. H. Knibbs, J. Nuclear Mats. 24 (1967) 174.Google Scholar
  28. 28.
    Fibreglass Ltd, FRP design data.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1977

Authors and Affiliations

  • T. C. Cotgreave
    • 1
  • J. B. Shortall
    • 1
  1. 1.Department of Metallurgy and Materials ScienceThe University of LiverpoolLiverpoolUK

Personalised recommendations