Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetics of shear-activated indentation crack initiation in soda-lime glass

  • 267 Accesses

  • 100 Citations

Abstract

The initiation of radial cracks in Vickers indentation of soda-lime glass is found to be strongly rate dependent. For long contact durations the radial cracks pop in during the indentation event, at a reproducible stage of the unloading half-cycle; for short contacts the pop-in occurs after the event, with considerable scatter in delay time. The phenomenon is interpreted in terms of an incubation time to develop a critical nucleus for the ensuing fracture. Increasing either the water content of the environment or the peak contact load diminishes the incubation time. Scanning electron microscopy of the indentation patterns indicates that the sources of the crack nuclei are constrained shear faults within the deformation zone. A qualitative model is developed in terms of a two-step process, precursor faulting followed by crack growth to pop-in instability. Moisture may influence both these steps, in the first by interfacial decohesion and in the second by slow crack growth. No definitive conclusion is reached as to which of the steps is ratecontrolling, although it appears that it is the shear across the fault and not the tension across the crack which is vital in driving the initiation. The implications of these results in connection with the basic mechanical properties of brittle solids, particularly strength, are considered.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975) Chaps. 1 and 2.

  2. 2.

    B. R. Lawn and A. G. Evans, J. Mater. Sci. 12 (1977) 2195.

  3. 3.

    B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc, 62 (1979) 347.

  4. 4.

    T. P. Dabbs, D. B. Marshall and B. R. Lawn, ibid., 63 (1980) 224.

  5. 5.

    T. P. Dabbs and B. R. Lawn, Comm. Amer. Ceram. Soc. 65 (1982) C-37.

  6. 6.

    D. J. Green, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1982).

  7. 7.

    B. R. Lawn, J. Amer. Ceram. Soc. 66 (1983) 83.

  8. 8.

    B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.

  9. 9.

    D. B. Marshall and B. R. Lawn, ibid. 14 (1979) 2001.

  10. 10.

    B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.

  11. 11.

    J. T. Hagan and M. V. Swain, J. Phys. D: Appl. Phys. 11 (1978) 2091.

  12. 12.

    A. Arora, D. B. Marshall, B. R. Lawn and M. V. Swain, J. Non-Cryst. Solids 31 (1979) 415.

  13. 13.

    J. T. Hagan, J. Mater. Sci. 14 (1979) 462.

  14. 14.

    Idem, ibid. 15 (1980) 1417.

  15. 15.

    K. Peter, J. Non-Cryst. Solids 5 (1970) 103.

  16. 16.

    T. P. Dabbs and B. R. Lawn, Phys. Chem. Glasses 23 (1982) 93.

  17. 17.

    S. M. Wiederhorn, J. Amer. Ceram. Soc., 50 (1967) 407.

  18. 18.

    S. M. Wiederhorn and L. H. Bolz, ibid., 53 (1970) 543.

  19. 19.

    D. T. Griggs and J. D. Blacic, Science 147 (1965) 292.

  20. 20.

    D. T. Griggs, Geophys. J. R. Astr. Soc. 14 (1967) 19.

  21. 21.

    C. H. Scholz and R. J. Martin, J. Amer. Ceram. Soc. 54 (1971) 474.

  22. 22.

    S. P. Gunasekera and D. G. Holloway, Phys. Chem. Glasses 14 (1973) 45.

  23. 23.

    V. R. Howes, Glass Tech. 15 (1974) 148.

  24. 24.

    C. J. Fairbanks, R. S. Polvani, S. M. Wiederhorn, B. J. Hockey and B. R. Lawn, J. Mater. Sci. Lett. 1 (1982) 391.

  25. 25.

    M. Wada, H. Furukawa and K. Fujita, in Proceedings of the 10th International Congress on Glass, Vol 11, (Ceramic Society of Japan, Tokyo, 1974) p. 39.

  26. 26.

    B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

  27. 27.

    T. P. Dabbs and B. R. Lawn, to be published.

  28. 28.

    B. R. Lawn and V. R. Howes, J. Mater. Sci. 16 (1981) 2745.

  29. 29.

    P. Humble and R. H. J. Hannink, Nature 273 (1978) 37.

  30. 30.

    S. M. Wiederhorn and P. R. Townsend, J. Amer. Ceram. Soc. 53 (1970) 486.

  31. 31.

    B. J. Hockey and B. R. Lawn, J. Mater. Sci. 10 (1975) 1275.

  32. 32.

    P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) Chap. 6.

  33. 33.

    J. F. Kranich and H. Scholze, Glastechn. Ber. 49 (1976) 135.

  34. 34.

    S. S. Chiang, D. B. Marshall and A. G. Evans, J. Appl. Phys. 53 (1982) 312.

  35. 35.

    E. R. Fuller, B. R. Lawn and R. F. Cook, J. Amer. Ceram. Soc. in press.

  36. 36.

    H. Ishikawa and N. Shinkai, Comm. Amer. Ceram. Soc. 65 (1982) C-124.

  37. 37.

    J. T. Hagan, J. Mater. Sci. 14 (1979) 2975.

Download references

Author information

Additional information

On leave from University of New South Wales, Australia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lawn, B.R., Dabbs, T.P. & Fairbanks, C.J. Kinetics of shear-activated indentation crack initiation in soda-lime glass. J Mater Sci 18, 2785–2797 (1983). https://doi.org/10.1007/BF00547596

Download citation

Keywords

  • Crack Initiation
  • Deformation Zone
  • Reproducible Stage
  • Critical Nucleus
  • Radial Crack