Journal of Materials Science

, Volume 23, Issue 8, pp 2951–2959 | Cite as

The infrared and Raman spectra of ZrO2-SiO2 glasses prepared by a sol-gel process

  • S. W. Lee
  • R. A. CondrateSr


Infrared and Raman spectra were measured and interpreted on the basis of structure for various ZrO2-SiO2 glasses that were prepared by a sol-gel process involving zirconium nitrate. Interpretation of the spectra indicates the presence of both Zr-O-Si and Si-O-H linkages depending upon heat treatment conditions, and the evidence of zirconium atoms with eight fold coordination for glasses with high ZrO2 contents. The crystalline products formed during glass devitrification were monitored by vibrational spectra. The formation and detection of tetragonal ZrO2, zircon, monoclinic ZrO2 and α-cristobalite depended upon the conditions of devitrification.


Nitrate Zirconium Heat Treatment Raman Spectrum Treatment Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Simhan, J. Non-Cryst. Solids 54 (1983) 335.Google Scholar
  2. 2.
    B. E. Yoldas, ibid. 38–39 (1980) 81.Google Scholar
  3. 3.
    P. P. Bihuniak and R. A. Condrate Sr, ibid. 44 (1981) 331.Google Scholar
  4. 4.
    Zhu Congshen, Hou Lisong, Gan Fuxi and Jiang Zhonghong, ibid. 63 (1984) 105.Google Scholar
  5. 5.
    M. Nogami, ibid. 69 (1985) 415.Google Scholar
  6. 6.
    S. S. D'Yakanov, V. I. Lygin, B. Z. Shalumov, K. L. Shepalin, A. I. Kuznetsov, V. M. Kostina and Y. I. Rastorguev, Trans. Izv. Akad. Neorg. Mat. 20 (1984) 97.Google Scholar
  7. 7.
    S. W. Lee, MS thesis, Alfred University (1986).Google Scholar
  8. 8.
    F. L. Galeener, Solid State Commun. 44 (1982) 1037.Google Scholar
  9. 9.
    F. L. Galeener and A. E. Geissberger, Phys. Rev. B 27 (1983) 6199.Google Scholar
  10. 10.
    C. J. Brinker, E. P. Roth, G. W. Scherer and D. R. Tallant, J. Non-Cryst. Solids 71 (1985) 171.Google Scholar
  11. 11.
    A. G. Revesz and G. E. Walrafen, ibid. 54 (1983) 323.Google Scholar
  12. 12.
    J. C. Phillips, Phys. Rev. B 32 (1985) 5350.Google Scholar
  13. 13.
    M. Nogami, J. Amer. Ceram. Soc. 67 (1984) c258.Google Scholar
  14. 14.
    C. J. Brinker and G. W. Scherer, J. Non-Cryst. Solids 70 (1985) 301.Google Scholar
  15. 15.
    C. J. Brinker, G. W. Scherer and E. P. Roth, ibid. 72 (1985) 345.Google Scholar
  16. 16.
    G. W. Scherer, C. J. Brinker and E. P. Roth, ibid. 72 (1985) 369.Google Scholar
  17. 17.
    A. Bertoluzza, C. Fagnano and M. A. Morelli, ibid. 48 (1982) 117.Google Scholar
  18. 18.
    M. F. Best and R. A. Condrate Sr, J. Mater. Sci. Lett. 4 (1985) 994.Google Scholar
  19. 19.
    C. V. Edney, R. A. Condrate Sr, W. B. Crandall and M. E. Washburn, ibid. 6 (1987) 308.Google Scholar
  20. 20.
    N. M. Bobkava, Zh. S. Tizhovka, V. V. Tizhovka and N. G. Cherenda, Trans. Zhur. Prikl. Spek. 31 (1979) 1075.Google Scholar
  21. 21.
    R. Hubin and P. Tarte, Spectrochim. Acta 27A (1971) 683.Google Scholar
  22. 22.
    P. Dawson, M. M. Hargreave and G. R. Wilkinson, J. Phys. C 4 (1971) 240.Google Scholar
  23. 23.
    J. H. Nicola and H. N. Rutt, ibid. 7 (1974) 1381.Google Scholar
  24. 24.
    F. Conzalez-Vilchez and W. P. Griffith, J. Chem. Soc. Dalton II (1972) 1416.Google Scholar
  25. 25.
    A. E. Pasto and R. A. Condrate Sr, Adv. Raman Spectrosc. 1 (1972) 196.Google Scholar
  26. 26.
    E. Anastassakis, B. Papanicolaou and I. M. Asher, J. Phys. Chem. Solids 36 (1975) 667.Google Scholar
  27. 27.
    H. Arash and M. Ishigame, Phys. Status Solidi (a) 71 (1982) 313.Google Scholar
  28. 28.
    V. G. Keramidas and W. B. White, J. Amer. Ceram. Soc. 57 (1974) 22.Google Scholar
  29. 29.
    C. M. Phillipi and K. S. Mazdiyasni, ibid. 54 (1971) 254.Google Scholar
  30. 30.
    D. P. C. Thackeray, Spectrochim. Acta 30A (1974) 549.Google Scholar
  31. 31.
    V. I. Aleksandrov, Yu. K. Voron'ko, B. V. Ignat'ev, E. E. Lomonova, V. V. Osiko and A. A. Sobol', Sov. Phys. Solid State 20 (1978) 305.Google Scholar
  32. 32.
    A. Feinberg and C. H. Perry, J. Phys. Chem. Solids 42 (1981) 513.Google Scholar
  33. 33.
    C. H. Perry and D. W. Liu, J. Amer. Ceram. Soc. 68 (1985) c184.Google Scholar
  34. 34.
    R. C. Garvie, J. Phys. Chem. 69 (1965) 1238.Google Scholar
  35. 35.
    F. F. Lange and D. J. Green, Adv. Ceram. 3 (1980) 217.Google Scholar
  36. 36.
    T. Mitsuhashi, M. Ichihara and U. Tatsuke, J. Amer. Ceram. Soc. 57 (1974) 97.Google Scholar
  37. 37.
    R. C. Garvie, J. Phys. Chem. 82 (1978) 218.Google Scholar
  38. 38.
    A. H. Heuer, N. Claussen, W. M. Kriven and M. Ruhle, J. Amer. Ceram. Soc. 65 (1982) 642.Google Scholar
  39. 39.
    I. Muller and W. Muller, Adv. Ceram. 12 (1983) 443.Google Scholar
  40. 40.
    M. Nogami and M. Tomozawa, J. Amer. Ceram. Soc. 69 (1986) 99.Google Scholar
  41. 41.
    S. C. Cherukuri, L. D. Pye, I. N. Chakraborty, R. A. Condrate Sr, J. R. Ferraro, B. C. Cornilsen and K. Martin, Spectrosc. Lett. 18 (1985) 123.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • S. W. Lee
    • 1
  • R. A. CondrateSr
    • 1
  1. 1.Institute of Glass Science and Engineering, NYS College of CeramicsAlfred UniversityAlfredUSA

Personalised recommendations