Journal of Materials Science

, Volume 23, Issue 8, pp 2697–2711 | Cite as

The formation of microsplits and damage rafts in proton-bombarded GaAs

  • J. H. Neethling
  • H. C. Snyman


The technique of cross-sectional transmission electron microscopy has been used to study the nature and formation of damage rafts, which act as dislocation sources, in proton-bombarded (5×1015, 1016 and 1017 H+ cm−2) and annealed GaAs. The results show that the rafts consist of a planar array of voids lying on the {110} cleavage planes of GaAs. The dislocations generated at these rafts are glissile, of the (a/2) 〈110〉 type, and glide on the {111} planes intersecting the rafts. Models are presented to show that these damage rafts originated at microsplits on the {110} cleavage planes of GaAs following the cracking open of small hydrogen-filled platelets on {110} planes when the internal gas pressure exceeds that which is necessary for crack propagation. From the analysis of the results an average diffusion length of ∼1 μm was estimated for vacancies in proton-bombarded GaAs at ∼900° C.


Polymer Microscopy Electron Microscopy Transmission Electron Microscopy GaAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Garmire, H. Stoll, A. Yariv and R. G. Hunsperger, Appl. Phys. Lett. 21 (1972) 87.Google Scholar
  2. 2.
    J. C. Dyment, J. C. North and L. A. D'Asaro, J. Appl. Phys. 44 (1973) 207.Google Scholar
  3. 3.
    H. C. Snyman and J. H. Neethling, Rad. Effects 60 (1982) 147.Google Scholar
  4. 4.
    Idem, ibid. 69 (1983) 199.Google Scholar
  5. 5.
    J. H. Neethling and H. C. Snyman, Rad. Effects. Lett. 76 (1983) 163.Google Scholar
  6. 6.
    Idem, J. Appl. Phys. 60 (1986) 941.Google Scholar
  7. 7.
    J. H. Neethling, H. C. Snyman and C. A. B. Ball, in Proceedings of the 13th International Conference on Defects in Semiconductors, August 1984, edited by L. C. Kimerling and J. M. Parsey (Metallurgical Society, Coronado, California, 1984) p. 427.Google Scholar
  8. 8.
    J. F. Gibbons, W. S. Johnson and S. W. Mylroie, “Projected Range Statistics”, 2nd Edn (Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, 1975) p. 29.Google Scholar
  9. 9.
    C. Hilsum and A. C. Rose-Innes, in “Semiconducting III–V Compounds” (Pergamon, Oxford, 1961) p. 86.Google Scholar
  10. 10.
    J. A. Van Vechten, J. Physica B & C 116 (1983) 575.Google Scholar
  11. 11.
    J. R. Lloyd and S. Nakahara, J. Electrochem. Soc. 125 (1978) 2037.Google Scholar
  12. 12.
    J. W. Edington, in “Practical Electron Microscopy in Materials Science”, Vol. 3 (MacMillan, London, 1975) p. 66.Google Scholar
  13. 13.
    T. J. Magee, Phys. Status Solidi (a) 26 (1974) 425.Google Scholar
  14. 14.
    J. W. Allen, Phil. Mag. 4 (1959) 1046.Google Scholar
  15. 15.
    P. W. Hutchinson and P. S. Dobson, ibid. 32 (1975) 745.Google Scholar
  16. 16.
    Idem, Phil. Mag. A 41 (1980) 601.Google Scholar
  17. 17.
    J. J. Comer, Rad. Effects 36 (1978) 57.Google Scholar
  18. 18.
    C. Messmer and J. C. Bilello, J. Appl. Phys. 52 (1981) 4623.Google Scholar
  19. 19.
    J. H. Neethling, H. C. Snyman and C. A. B. Ball, ibid. 59 (1988) 704.Google Scholar
  20. 20.
    S. P. Ardren, C. A. B. Ball, J. H. Neethling and H. C. Snyman, ibid. 60 (1986) 965.Google Scholar
  21. 21.
    W. A. Brantley, ibid. 44 (1973) 534.Google Scholar
  22. 22.
    R. I. Cottam and G. A. Saunders, J. Phys. C: Solid State Phys. 6 (1973) 2105.Google Scholar
  23. 23.
    Yu. A. Burenkov, Yu. M. Burdukov, S. Yu. Davykov and S. P. Nikanorov, Sov. Phys. Solid State 15 (1973) 1175.Google Scholar
  24. 24.
    J. H. Evans, A. Van Veen and L. M. Caspers, Scripta Metall. 17 (1983) 549.Google Scholar
  25. 25.
    H. C. Snyman, J. H. Neethling and C. A. B. Ball, in Proceedings of the 18th International Conference on Solid State Devices and Materials, 20–22 August, 1986, Tokyo (Japan Society for Applied Physics, Tokyo, 1986) p. 745.Google Scholar
  26. 26.
    G. H. Schwuttke, in Proceedings of the Symposium on Material Science Aspects of Thin Film Systems for Solar Energy Conversion, 20–22 May, 1974, Tucson, Arizona, edited by B. O. Seraphin (National Science Foundation, Tucson, 1974) p. 49.Google Scholar
  27. 27.
    R. U. Khokhar and D. Haneman, Solid State Electron. 13 (1970) 439.Google Scholar
  28. 28.
    Idem, ibid. 15 (1972) 948.Google Scholar
  29. 29.
    J. W. Allen, Phil. Mag. 4 (1959) 1046.Google Scholar
  30. 30.
    J. J. Comer, J. Appl. Phys. 50 (1979) 6003.Google Scholar
  31. 31.
    T. Takeyama and H. Takahashi, in Proceedings of Conference on Hydrogen in Metals, 26–29 November, 1979, Minakami, Gunma Pref., Japan (Japan Institute of Metals, Aoba Aramaki, Sendai 980, Japan, 1980) p. 409.Google Scholar
  32. 32.
    Idem, in Proceedings of US-Japan Seminar on the Mechanical Properties of BCC Metals, 23–27 March, 1981, Honolulu, Hawaii, edited by M. Meshii (Metallurgical Society of AIME, Honolulu, Hawaii, 1981) p. 135.Google Scholar
  33. 33.
    J. A. Van Vechten, Phys. Rev. B 10 (1974) 1482.Google Scholar
  34. 34.
    Idem, ibid. 12 (1975) 1247.Google Scholar
  35. 35.
    A. Hiraki, J. Phys. Soc. Jpn 21 (1966) 34.Google Scholar
  36. 36.
    D. V. Lang, in “Radiation Effects in Semiconductors 1976”, Institute of Physics Conference Series No. 31, 6–9 September 1976, Dubrovnik (Institute of Physics, Bristol, UK, 1977) p. 70.Google Scholar
  37. 37.
    P. W. Hutchinson and P. S. Dobson, J. Mater. Sci. 10 (1975) 1636.Google Scholar
  38. 38.
    H. R. Potts and G. L. Pearson, J. Appl. Phys. 37 (1966) 2098.Google Scholar
  39. 39.
    B. J. Masters, “Defects and Radiation Effects in Semiconductors 1978”, Institute of Physics Conference Series No. 46, 11–14 September, 1978, Nice (Institute of Physics, Bristol, UK, 1979) p. 545.Google Scholar
  40. 40.
    J. H. Evans, J. Nucl. Mater. 68 (1977) 129.Google Scholar
  41. 41.
    K. Seshan and E. P. EerNisse, Appl. Phys. Lett. 33 (1978) 21.Google Scholar
  42. 42.
    J. Roth, in “Applications of Ion Beams to Materials 1975”, Institute of Physics Conference Series No. 28 (1976) p. 280.Google Scholar
  43. 43.
    D. Laister and G. M. Jenkins, J. Mater. Sci. 8 (1973) 1218.Google Scholar
  44. 44.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon, Oxford, 1953) p. 84.Google Scholar
  45. 45.
    D. J. Stirland and B. W. Straughan, Thin Solid Films 31 (1976) 139.Google Scholar
  46. 46.
    E. P. EerNisse, in “Ion Implantation in Semiconductor and other Materials”, edited by B. L. Crowder (Plenum, New York, 1973) p. 531.Google Scholar
  47. 47.
    K. Endo, S. Matsumoto, H. Kawano and I. Sakuma, Appl. Phys. Lett. 40 (1982) 921.Google Scholar
  48. 48.
    O. Ueda, S. Isozumi, S. Yamakoshi and T. Kotani, J. Appl. Phys. 50 (1979) 765.Google Scholar
  49. 49.
    P. Petroff and R. L. Hartman, Appl. Phys. Lett. 23 (1973) 469.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • J. H. Neethling
    • 1
  • H. C. Snyman
    • 1
  1. 1.Department of PhysicsUniversity of Port ElizabethPort ElizabethRepublic of South Africa

Personalised recommendations