Advertisement

Oecologia

, Volume 44, Issue 3, pp 403–409 | Cite as

Reingestion of feces in rodents and its daily rhythmicity

  • G. J. Kenagy
  • Donald F. Hoyt
Article

Summary

The ingestion of feces is widespread among rodent species and is an extensively employed component of the repertoire of feeding behaviors in some species. Coprophagy is thus a significant consideration in the nutrition and dietary ecology of many rodents. As certain fecal pellets pass from the anus, they are taken up directly into the mouth, chewed, and swallowed. The nocturnally active herbivorous kangaroo rat Dipodomys microps ingests about 1/4 of the feces it produces daily and the daily pattern of reingestion shows a consistent rhythm. For about 8 h of the daytime, during the non-foraging, resting phase of the day, D. microps reingests all fecal pellets produced; during the remainder of the day it leaves all feces produced. The reingested feces contain more nitrogen and water, and less inorganic ions than the non-reingested feces. The extent of reingestion varies among rodent species in relation to diet, and coprophagy is more important in the more herbivorous species. The granivorous kangaroo rat D. merriami ingests feces rarely. The herbivorous vole Microtus californicus ingests about 1/4 of its feces, as does D. microps. However, in contrast to D. microps, M. californicus shows a series of rhythmic, short-term (one to several hour duration) alternations between reingestion and non-reingestion during the course of the day and night. This pattern correlates with the pattern of foraging in M. californicus, which extends over both night and day.

Keywords

Nitrogen Fecal Pellet Herbivorous Species Rodent Species Daily Rhythmicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, R.H.: Nutritional strategies of myomorph rodents in North American grasslands. J. Mammal. 52, 800–805 (1971)Google Scholar
  2. Barnes, R.H., Fiala, G., Kwong, E.: Decreased growth rate resulting from prevention of coprophagy. Fed. Proc. 22, 125–128 (1963)Google Scholar
  3. Barry, R.E.: Mucosal surface areas and villous morphology of the small intestine of small mammals: functional interpretations. J. Mammal. 57, 273–290 (1976)Google Scholar
  4. Baverstock, P., Green, B.: Water recycling by lactation. Science 187, 657–658 (1975)Google Scholar
  5. Booth, Y.S.: Shrews (Crocidura cassiteridum) on the Scilly Isles. Zool. Soc. Lond. Proc. 126, 167–170 (1956)Google Scholar
  6. Carleton, M.D.: A survey of gross stomach morphology in new world Cricetinae (rodentia, Muroidea), with comments on functional interpretations. Misc. Publs. Mus. Zool. Univ. Mich., 146, 1–43 (1973)Google Scholar
  7. Charles-Dominique, P., Hladik, C.M.: Le lépilemur du Sud de Madagascar: écologie, alimentation et vie sociale. La Terre et la Vie 25, 3–66 (1971)Google Scholar
  8. Crowcroft, P.: Refection in the common shrew. Nature 170, 627 (1952)Google Scholar
  9. Daan, S.: Adaptive daily strategies in behaviour. In: Handbook of Behavioural Neurobiology Volume 5. Biological Rhythms. (J. Aschoff, ed.) Chapter 3.6.1. Plenum Press, In Press 1980Google Scholar
  10. Daan, S., Slopsema, S.: Short-term rhythms in foraging behaviour of the common vole, Microtus arvalis. J. Comp. Physiol. 127, 215–227 (1978)Google Scholar
  11. Daft, F.S., McDaniel, E.G., Herman, L.G., Romine, M.K., Kegner, J.R.: Role of coprophagy in utilization of B vitamins synthesized by intestinal bacteria. Fed. Proc. 22, 129–133 (1963)Google Scholar
  12. Eden, A.: Coprophagy in the rabbit. Nature 145, 36–37 (1940)Google Scholar
  13. Eden, A.: Coprophagy in the rabbit: origin of ‘night’ faeces. Nature 145, 628–629 (1940)Google Scholar
  14. Clvehjem, C.A.: Nutritional significance of the intestinal flora. Fed. Proc. 7, 410–417 (1948)Google Scholar
  15. Citzgerald, R.J., Gustafsson, B.E., McDaniel, E.G.: Effects of coprophagy prevention on intestinal microflora in rats. J. Nutrition 84, 155–159 (1964)Google Scholar
  16. Frank, I., Hadeler, U., Harder, W.: Zur Ernährungsphysiologie der Nagetiere. Pflügers Archiv. 253, 173–180 (1951)Google Scholar
  17. Fridericia, L.S., Freudenthal, P., Gudjonnsson, S., Johansen, G., Schoubye, N.: Refection, a trasmissible change in the intestinal content, enabling rats to grow and thrive without vitamin B in the food. J. Hygiene 27, 70–102 (1927)Google Scholar
  18. Grützner, P.: Ein Beitrag zum Mechanismus der Magenverdauung. Pflügers Archiv 106, 463–522 (1905)Google Scholar
  19. Haga, R.: Observations on the ecology of the Japanese pika. J. Mammal. 41, 200–212 (1960)Google Scholar
  20. Hamilton, W.J.: Coprophagy in the swamp rabbit. J. Mammal. 36, 303–304 (1955)Google Scholar
  21. Hamilton, W.J.: Reproductive adaptations of the red tree mouse. J. Mammal. 43, 486–504 (1962)Google Scholar
  22. Harder, W.: Zur Morphologie und Physiologie des Blinddarmes der Nagetiere. Verh. deut. Zool. Ges. 1949, 95–109 (1949)Google Scholar
  23. Heisinger, J.F.: Periodicity of reingestion in the cottontail. Amer. Midl. Natur. 67, 441–448 (1962)Google Scholar
  24. Hörnicke, H., Batsch, F.: Coecotrophy in rabbits-A circadian function. J. Mammal. 58, 240–242 (1977)Google Scholar
  25. Howell, A.B., Gersh, I.: Conservation of water by the rodent Dipodomys. J. Mammal 16, 1–9 (1935)Google Scholar
  26. Ingles, L.G.: Reingestion in the mountain beaver. J. Mammal 42, 411–412 (1961)Google Scholar
  27. Jilge, B.: The entrainment of circadian soft faeces excretion in the rabbit. J. interdiscipl. Cycle Res. 7, 229–235 (1976)Google Scholar
  28. Jilge, B.: The entrainment of caecotrophy-rhythm of the rabbit following 6-and 12 h phase-shifts of the Zeitgeber. Chronobiologia 6, 33–38 (1979)Google Scholar
  29. Kalugin, Y.A.: Coprophagy of rodents and lagomorphs and its physiological importance. Zool. Zhur. 53, 1840–1847 (1974)Google Scholar
  30. Kenagy, G.J.: Saltbush leaves: excision of hypersaline tissue by a kangaroo rat. Science 178, 1094–1095 (1972)Google Scholar
  31. Kenagy, G.J.: Adaptations for leaf eating in the Great Basin kangaroo rat, Dipodomys microps. Oecologia (Berl.) 12, 383–412 (1973)Google Scholar
  32. Kenagy, G.J.: The periodicity of daily activity and its seasonal changes in free-ranging and captive kangaroo rats. Oecologia (Berl.) 24, 105–140 (1976)Google Scholar
  33. Kenagy, G.J.: Environmental adaptation and temporal organization of behavior in kangaroo rats. In: Behavioral Expression of Biological Rhythms (W. Loher, ed.), Garland STPM Press, New York In Press 1980Google Scholar
  34. Kirkpatrick, C.M.: Coprophagy in the cottontail. J. Mammal. 37, 300 (1956)Google Scholar
  35. Krzywanek, F.W.: Vergleichende Untersuchungen über die Mechanik der Verdauung II. Mitteilung. Röntgenologische Studien am omnivoren Nager (Ratte). Archiv für Tierheilkunde (Berlin) 55, 523–536 (1927)Google Scholar
  36. Landry, S.O.: The rodentia as omnivores. Quart. Rev. Biol. 45, 351–372 (1970)Google Scholar
  37. Lechleitner, R.R.: Reingestion in the black-tailed jack rabbit. J. Mammal 38, 481–485 (1957)Google Scholar
  38. Lehmann, U.: Short-term and circadian rhythms in the behavior of the vole, Microtus agrestis (L.). Oecologia (Berl.) 23, 185–199 (1976)Google Scholar
  39. Loxton, R.G., Raffaelli, D., Begon, M.: Coprophagy and the diurnal cycle of the common shrew, Sorex araneus. J. Zool. Lond. 177, 449–453 (1975)Google Scholar
  40. McNab, B.K.: Bioenergetics and the determination of home range size. Amer. Natur. 97, 133–140 (1963)Google Scholar
  41. Madsen, H.: Does the rabbit chew the cud? Nature 143, 981–982 (1939)Google Scholar
  42. Mickelsen, O.: Intestinal synthesis of vitamins in the nonruminant. Vitamins and Hormones 14, 1–95 (1956)Google Scholar
  43. Morot, C.: Des pelotes stomacales des léporidés. Mém. Soc. Centr. Méd. Vét. 12, Ser. 1, Paris (1882)Google Scholar
  44. Osborne, T.B., Mendel, L.B.: Feeding experiments with isolated food-substances. Carnegie Inst. of Wash. Publ. No. 156 (1911)Google Scholar
  45. Pearson, O.P.: Habits of Microtus californicus revealed by automatic photographic recorders. Ecol. Monogr. 30, 231–249 (1960)Google Scholar
  46. Rood, J.P.: Ecology and social behavior of the desert cavy (Microcavia australis). Amer. Midl. Nat. 83, 415–454 (1970)Google Scholar
  47. Scheunert, A., Zimmerman, K.: Bakterielle Synthese im Blinddarm und Koprophagie beim Kaninchen. Archiv für Tierernährung 2, 217–222 (1951)Google Scholar
  48. Southern, H.N.: Coprophagy in the wild rabbit. Nature 145, 262 (1940)Google Scholar
  49. Southern, H.N.: Periodicity of refection in the wild rabbit. Nature 149, 553–554 (1942)Google Scholar
  50. Sperber, I.: Physiological mechanisms in herbivores for retention and utilization of nitrogenous compounds. In: Isotope Studies on the Nitrogen Chain, pp. 209–219. Vienna: International Atomic Energy Ageny 1967Google Scholar
  51. Swirski, G.: Über die Resorption und Ausscheidung des Eisens im Darm der Meerschweinchen. Pflügers Archiv 74, 466–510 (1899)Google Scholar
  52. Taylor, E.L.: Pseudo-rumination in the rabbit. Zool. Soc. London Proc. Ser. A110, 159–163 (1940)Google Scholar
  53. Taylor, E.L.: The demonstration of a peculiar kind of coprophagy normally practised by the rabbit. Vet. Record 52, 259–262 (1940)Google Scholar
  54. Thacker, E.J., Brandt, C.S.: Coprophagy in the rabbit. J. Nutr. 55, 375–385 (1955)Google Scholar
  55. Tyndale-Biscoe, H.: Life of Marsupials. Edward Arnold, London (1973)Google Scholar
  56. Vorontsov, N.N.: The ways of food specialization and evolution of the alimentary system in muroidea. Symposium Theriologicum 1960, 360–377 (Prag) (1962)Google Scholar
  57. Watson, J.S., Taylor, R.H.: Reingestion in the hare Lepus europaeus Pal. Science 121, 314 (1955)Google Scholar
  58. Wilks, B.J.: Reingestion in geomyid rodents. J. Mammal. 43, 267 (1962)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. J. Kenagy
    • 1
  • Donald F. Hoyt
    • 2
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA
  2. 2.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA

Personalised recommendations