Journal of Materials Science

, Volume 20, Issue 9, pp 3283–3288 | Cite as

Sulphuric acid etching of polyethylene surfaces

  • C. Fonseca
  • J. M. Pereña
  • J. G. Fatou
  • A. Bello


The sulphuric acid etching of polyethylene results in the formation of sulphonic groups, varying the surface properties. The study of the groups formed during the etching has been carried out by means of frustrated multiple internal reflection infrared spectroscopy (FMIR). Densities, thermal properties, superficial resistances and resistivities have been correlated with the content of sulphonic groups and treatment time. Moreover, the critical surface tension and platelet adhesion have been examined and related with the change in those properties. Direct sulphonation of polyethylene is a suitable method to change its surface properties, improving the application of this polymer as a biomaterial.


Sulphuric Acid Platelet Adhesion Relative Absorbance Short Treatment Time Decalin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. I. Leininger, J. P. Crawley, R. D. Falb and G. A. Grode, Trans. Amer. Soc. Artif. Intern. Organs17 (1972) 312.CrossRefGoogle Scholar
  2. 2.
    M. F. Dyck, J. Biomed. Mater. Res.6 (1972) 115.CrossRefGoogle Scholar
  3. 3.
    W. Y. Chen, B. Z. Xu and X. D. Feng. J. Polym. Sci. Polym. Chem. Ed.20 (1982) 547.CrossRefGoogle Scholar
  4. 4.
    E. E. Nishizawa, D. J. Wynalda and D. Lednicer. Trans. Amer. Soc. Artif. Intern. Organs19 (1973) 13.CrossRefGoogle Scholar
  5. 5.
    K. Kamide, K. Okajima, T. Matsui, M. Ohnishi and H. Kobayashi, Polym. J.15 (1983) 309.CrossRefGoogle Scholar
  6. 6.
    A. Keller and S. Sawada, Makromol. Chem.74 (1964) 190.CrossRefGoogle Scholar
  7. 7.
    J. Guzmán, J. G. Fatou and J. M. Pereña, ibid.181 (1980) 1051.CrossRefGoogle Scholar
  8. 8.
    A. Keller and Y. Udagawa, J. Polym. Sci., Part A-29 (1971) 1793.CrossRefGoogle Scholar
  9. 9.
    A. Peterlin, G. Meinel and H. G. Olf, J. Polym. Sci., Part B4 (1966) 399.CrossRefGoogle Scholar
  10. 10.
    P. S. Francis, R. C. Cooke, Jr and J. H. Elliott. J. Polym. Sci.31 (1958) 453.CrossRefGoogle Scholar
  11. 11.
    R. Chiang and P. J. Flory, J. Amer. Chem. Soc.83 (1961) 2857.CrossRefGoogle Scholar
  12. 12.
    J. M. Barrales-Rienda and J. G. Fatou, Polymer13 (1972) 407.CrossRefGoogle Scholar
  13. 13.
    H. A. Willis and V. J. Zichy, “Polymer surfaces”, edited by D. T. Clark and W. J. Feast (Wiley, Chichester, 1978) pp. 287–307.Google Scholar
  14. 14.
    J. Martinez-Salazar, D. R. Rueda, M. E. Cagiao, E. López-Cabarcos and F. J. Baltá Calleja, Polym. Bull.10 (1983) 553.CrossRefGoogle Scholar
  15. 15.
    F. J. Baltá Calleja, C. Fonseca, J. M. Pereña and J. G. Fatou, J. Mater. Sci. Lett.3 (1984) 509.CrossRefGoogle Scholar
  16. 16.
    P. Blais, D. J. Carlsson, G. W. Csullog and D. M. Wiles, J. Coll. Interf. Sci.47 (1974) 636.CrossRefGoogle Scholar
  17. 17.
    R. Trilla, J. M. Pereña and J. G. Fatou, Polym. J.15 (1983) 803.CrossRefGoogle Scholar
  18. 18.
    W. A. Zisman, Adv. Chem. Ser.43 (1964) 1.CrossRefGoogle Scholar
  19. 19.
    L. L. Hench and E. C. Ethridge, “Biomaterials. An Interfacial approach” (Academic, New York, 1982) p. 12.Google Scholar
  20. 20.
    N. A. Platé and L. I. Valuev, Biomaterials4 (1983) 14.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • C. Fonseca
    • 1
  • J. M. Pereña
    • 1
  • J. G. Fatou
    • 1
  • A. Bello
    • 1
  1. 1.Unidad de Física y Fisicoquímica de PolímerosInstituto de Plásticos y Caucho, CSICMadrid 6Spain

Personalised recommendations