Journal of Materials Science

, Volume 24, Issue 12, pp 4399–4402 | Cite as

Kinetics of two-stage crystallization in Metglas 2826A

  • R. S. Tiwari
  • J. C. Claus
  • S. Ranganathan


Crystallization kinetics of MSI and MSII stages in Metglas 2826A has been investigated by quantitative transmission electron microscopy. The volume fraction of crystallization against time curve has been found to show a plateau in the lower temperature region of annealing. It has been found that the glass transition temperature, Tg, has no effect on the sequence reversal of the crystallization reaction. It has been shown that the sequence reversal of transformation stages occurs due to the large difference in the activation energy of crystallization of MSI and MSII. In addition, the change in the morphology of the crystals obtained by annealing the amorphous alloy below and above the glass transition temperature, Tg, is reported.


Polymer Microscopy Electron Microscopy Crystallization Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Heimendahl and G. Maussner, J. Mater. Sci. 14 (1979) 1238.Google Scholar
  2. 2.
    Idem, International Conference on RQM, Brighton, edited by B. Cantor (Metals Society, London, 1978) p. 424.Google Scholar
  3. 3.
    H. Chang and S. Sastri, Met. Trans. 8A (1977) 1063.Google Scholar
  4. 4.
    S. Ranganathan, J. C. Claus, R. S. Tiwari and M. V. Heimendahl, Proceedings of the Conference on Metallic Glasses: Science and Technology, Vol. 2, edited by C. Hargitai, I. Bakonyi and T. Kemeny, Kultura, Budapest (1980) p. 327.Google Scholar
  5. 5.
    M. V. Heimendahl and H. Oppolzer, Scripta Metall. 12 (1978) 1087.Google Scholar
  6. 6.
    S. J. Thorpe, B. Ramaswami and K. T. Aust, Acta Metall. 36 (1988) 795.Google Scholar
  7. 7.
    H. W. Bergmann and H. V. Fritsch, Met. Sci. 16 (1982) 197.Google Scholar
  8. 8.
    U. Koster and U. Herold, “Glassy Metals I”, edited by H. J. Guntherodt and H. Beck (Springer Verlag, Heidelberg, 1981) p. 225.Google Scholar
  9. 9.
    U. Koster, Z. Metallkde 75 (1984) 691.Google Scholar
  10. 10.
    J. W. Cahn and J. Nutting, Trans. Met. Soc. AIME 215 (1959) 526.Google Scholar
  11. 11.
    M. V. Heimendahl, Micron 4 (1973) 111.Google Scholar
  12. 12.
    C. Antonione, L. Battezaati, A. Lucci, R. Riontino and G. Venturello, Scripta Metall. 12 (1978) 1011.Google Scholar
  13. 13.
    J. E. Shelby, J. Non-cryst. Solids 34 (1978) 111.Google Scholar
  14. 14.
    M. V. Heimendahl and G. Kuglstatter, J. Met. Sci. 16 (1981) 2405.Google Scholar
  15. 15.
    A. Zaluska, D. Zaluski, R. Petryk, Zielinsky and Z. Matijya, International Conference on RQM, edited by S. Steeb and H. Warliment (Elsevier Würtzburg, 1984) p. 235.Google Scholar
  16. 16.
    R. L. Freed and J. B. Vander Sande, Acta Metall. 28 (1980) 103.Google Scholar
  17. 17.
    S. Ranganathan and M. V. Heimendahl, J. Mater. Sci. 16 (1981) 2401.Google Scholar
  18. 18.
    Y. D. Dong, G. Gregan and M. G. Scott, J. Noncryst. Solids 43 (1981) 403.Google Scholar
  19. 19.
    G. J. Davies, “Solidification and Casting” (Applied Science, London, 1973).Google Scholar
  20. 20.
    R. S. Tiwari, M. V. Heimendahl and S. Ranganathan, Z. Metallkde 78 (1987) 275.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • R. S. Tiwari
    • 1
  • J. C. Claus
    • 2
  • S. Ranganathan
    • 3
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.DIEHL GmbH and Co.Nurnberg 1West Germany
  3. 3.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations