Journal of Materials Science

, Volume 26, Issue 5, pp 1333–1345

Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material

  • E. Bouillon
  • F. Langlais
  • R. Pailler
  • R. Naslain
  • F. Cruege
  • P. V. Huong
  • J. C. Sarthou
  • A. Delpuech
  • C. Laffon
  • P. Lagarde
  • M. Monthioux
  • A. Oberlin
Papers

Abstract

The pyrolysis of a PCS precursor has been studied up to 1600 °C through the analysis of the gas phase and the characterization of the solid residue by thermogravimetric analysis, extended X-ray absorption fine structure, electron spectrocopy for chemical analysis, transmission electron microscopy, X-ray diffraction, Raman and Auger electron spectroscopy microanalyses, as well as electrical conductivity measurements. The pyrolysis mechanism involves three main steps: (1) an organometallic mineral transition (550 < Tp < 800 °C) leading to an amorphous hydrogenated solid built on tetrahedral SiC, Si02 and silicon oxycarbide entities, (2) a nucleation of SiC (1000 < Tp < 1200 °C) resulting in SiC nuclei (less than 3 nm in size) surrounded with aromatic carbon layers, and (3) a SiC grain-size coarsening (Tp > 1400 °C) consuming the residual amorphous phases and giving rise simultaneously to a probable evolution of SiO and CO. The formation of free carbon results in a sharp insulator-quasimetal transition with a percolation effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Rice, Ceram. Bull. 62 (1983) 889.Google Scholar
  2. 2.
    S. Yajima, in “Handbook of Composites” Vol. 1, “Strong Fibers” edited by W. Watt and B. V. Perov (Elsevier Science, New York, 1985) p. 201.Google Scholar
  3. 3.
    Y. Hasegawa, M. Iimuraand S. Yajima, J. Mater. Sci. 15 (1980) 720.Google Scholar
  4. 4.
    T. Mah, N. L. Hecht, D. E. McCallum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, ibid. 19 (1984) 1191.Google Scholar
  5. 5.
    G. Simon and A. R. Bunsell, ibid. 19 (1984) 3649.Google Scholar
  6. 6.
    Idem., ibid. 19 (1984) 3658.Google Scholar
  7. 7.
    T. J. Clark, R. Arons, J. Rabe and J. B. Stamatoff, Ceram. Engng Sci. Proc. 6 (1985) 576.Google Scholar
  8. 8.
    T. J. Clark, M. Jaffe, J. Rabe and N. R. Langley, ibid. 7 (1986) 901.Google Scholar
  9. 9.
    L. C. Sawyer, R. T. Chin, F. Haimback, P. J. Harget, E. R. Prack and M. Jaffe, ibid. 7 (1986) 914.Google Scholar
  10. 10.
    K. Okamura, Composites 18 (1987) 107.Google Scholar
  11. 11.
    A. S. Fareed, P. Fang, J. Koczak and F. M. Ko, Ceram. Bull. 66 (1987) 353.Google Scholar
  12. 12.
    L. C. Sawyer, M. Jamieson, D. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.Google Scholar
  13. 13.
    C. Laffon, P. Lagarde, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, S. Dixmier, M. Laridjani, A. P. Legrand and B. Homelle, J. Mater. Sci. 24 (1989) 1503.Google Scholar
  14. 14.
    Y. Hasegawa and K. Okamura, ibid. 18 (1983) 3633.Google Scholar
  15. 15.
    S. Yajima, Y. Hasegawa, J. Hayashi and M. Iimura, ibid. 13 (1978) 2569.Google Scholar
  16. 16.
    Y. Hasegawa and K. Okamura, ibid. 21 (1986) 321.Google Scholar
  17. 17.
    J. C. Sarthou, University thesis 155, Bordeaux (1984).Google Scholar
  18. 18.
    J. J. Poupeau, D. Abbe and J. Jamet, ONERA Report (1982).Google Scholar
  19. 19.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.Google Scholar
  20. 20.
    Y. Misokawa, K. M. Geib and C. W. Winsem, J. Vac. Sci. Technol. A 4 (1986) 1696.Google Scholar
  21. 21.
    J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.Google Scholar
  22. 22.
    D. Bouchier and A. Bosseboeuf, Thin Solid Films 139 (1986) 95.Google Scholar
  23. 23.
    P. Lespade, A. Marchand, M. Couzi and F. Cruege, Carbon 22 (1984) 375.Google Scholar
  24. 24.
    F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53 (1970) 1126.Google Scholar
  25. 25.
    B. S. Elman, M. S. Dresselhaus, G. Dresselhaus, E. W. Maby and H. Mazurek, Phys. Rev. B 24 (1981) 1027.Google Scholar
  26. 26.
    T. C. Chieu, M. S. Dresselhaus and M. Endo, ibid. 26 (1982) 5867.Google Scholar
  27. 27.
    M. Gorman and S. A. Solin, Solid State Commun. 15 (1974) 761.Google Scholar
  28. 28.
    Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata and S. Tsuboi, ibid. 48 (1983) 1071.Google Scholar
  29. 29.
    A. Morimoto, T. Kataoka, M. Kumeda and T. Shimizu, Philos. Mag. B 50 (1984) 517.Google Scholar
  30. 30.
    P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi and F. Cruege, J. Mater. Sci. 19 (1984) 2731.Google Scholar
  31. 31.
    M. Monthioux, A. Oberlin and E. Bouillon, Compos. Sci. Technol. 37 (1990) 21.Google Scholar
  32. 32.
    H. A. Pohl, in “Modern Aspects of the Vitrous State”, Vol. 2, edited by J. D. Mackenzie (London, 1972) p. 72.Google Scholar
  33. 33.
    M. Rodot, “Les Matériaux Semi Conducteurs” Vol. 2 (Dunod, Paris, 1965).Google Scholar
  34. 34.
    F. Carmona, P. Delhaes, F. Barreau, D. Ordiera, R. Canet and L. Lafeychine, J. Phys. 41 (1980) 531.Google Scholar
  35. 35.
    S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rawcliffe, J. Amer. Ceram. Soc. 71 (1988) C-132.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • E. Bouillon
    • 1
  • F. Langlais
    • 1
  • R. Pailler
    • 1
  • R. Naslain
    • 1
  • F. Cruege
    • 2
  • P. V. Huong
    • 2
  • J. C. Sarthou
    • 3
  • A. Delpuech
    • 3
  • C. Laffon
    • 4
  • P. Lagarde
    • 4
  • M. Monthioux
    • 5
  • A. Oberlin
    • 5
  1. 1.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux 1TalenceFrance
  2. 2.Laboratoire de Spectroscopie Moléculaire et CristallineUniversité de Bordeaux 1TalenceFrance
  3. 3.Centre d'Etudes Scientifiques et Techniques d'AquitaineCEALe BarpFrance
  4. 4.LURE, Bt 209DUniversité de Paris-OrsayOrsayFrance
  5. 5.Laboratoire Marcel MathieuUniversité de PauPauFrance

Personalised recommendations