Journal of Materials Science

, Volume 25, Issue 1, pp 311–320 | Cite as

Crystal morphology in pristine and doped films of poly (p-phenylene vinylene)

  • Michael A. Masse
  • David C. Martin
  • Edwin L. Thomas
  • Frank E. Karasz
  • Jurgen H. Petermann


The crystal morphology of oriented films of poly (p-phenylene vinylene) (PPV) has been investigated using electron microscopy and X-ray diffraction. An X-ray diffraction rotation series confirmed the existence of fibre symmetry in bulk oriented films. Dark-field imaging by transmission electron microscopy (TEM) revealed small diffracting regions of the order of 7 nm in size with an aspect ratio near 1. These diffracting regions were shown by high resolution transmission electron microscopy (HREM) to be composed of small crystallites with an average size of 5 nm. Imaging of the lateral packing by HREM allowed the evaluation of local variations in crystallite orientation. This HREM method of orientation function determination compares well to bulk methods (e.g. wide-angle X-ray scattering, infrared dichroism) for PPV of similar draw ratio. A micellar model is presented to describe the crystalline morphology of oriented PPV. The model presents PPV as a highly connected network of small crystallites. The well-formed crystalline regions are thought to compose approximately 50% of the sample volume with the remainder of the volume being grain boundaries. Doping by AsF5 led to the formation of an electron-dense overlayer, thought to be arsenic oxide, which prohibited darkfield imaging of the crystallites. After doping with H2SO4, crystallites of the electrically conductive phase were observed. The general morphological character is preserved in the conversion from insulating to conducting forms. For the conditions employed, the doped diffracting regions were 4 nm in size and retained the orientation initially present in the pristine film.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Draw Ratio Crystal Morphology Small Crystallite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. E. Karasz, J. D. Capistran, D. R. Gagnon and R. W. Lenz, Molec. Cryst. Liq. Cryst. 118 (1985) 327.Google Scholar
  2. 2.
    I. Murase, T. Ohnishi, T. Noguchi, M. Hirooka and S. Murakami, ibid. 118 (1985) 333.Google Scholar
  3. 3.
    J. M. Machado, M. A. Masse and F. E. Karasz, Polymer in press.Google Scholar
  4. 4.
    K. D. Gourley, C. P. Lillya, J. R. Reynolds and J. C. W. Chien, Macromol. 17 (1984) 1025.Google Scholar
  5. 5.
    R. W. Lenz, C. C. Han, J. Stenger-Smith, and F. E. Karasz, J. Polym. Sci. Chem. 26 (1988) 3241.Google Scholar
  6. 6.
    D. D. C. Bradley, J. Phys. D. Appl. Phys. 20 (1987) 1389.Google Scholar
  7. 7.
    D. D. C. Bradley, R. H. Friend, H. Lindenberger, and S. Roth, Polymer 27 (1986) 1709.Google Scholar
  8. 8.
    D. R. Gagnon, PhD dissertation, University of Massachusetts (1986).Google Scholar
  9. 9.
    T. Granier, E. L. Thomas, D. R. Gagnon, F. E. Karasz and R. W. Lenz, J. Polym. Sci. Phys. 24 (1986) 2793.Google Scholar
  10. 10.
    T. Granier, E. L. Thomas and F. E. Karasz, ibid. 27 (1989) 469.Google Scholar
  11. 11.
    M. A. Masse, J. B. Schlenoff, F. E. Karasz and E. L. Thomas, ibid. in press.Google Scholar
  12. 12.
    D. R. Gagnon, J. D. Capistran, F. E. Karasz and R. W. Lenz, Polym. Bull. 12 (1984) 293.Google Scholar
  13. 13.
    J. R. Minter, K. Shimamura, and E. L. Thomas, J. Mater. Sci. 16 (1981) 3303.Google Scholar
  14. 14.
    S. J. Krause, T. B. Haddock, D. L. Vezie, P. G. Lenhert, W-F. Hwang, G. E. Price, T. E. Helminiak, J. F. O'Brien and W. W. Adams, Polymer 29 (1988) 1354.Google Scholar
  15. 15.
    J. R. White and E. L. Thomas, J. Mater. Sci. 20 (1985) 2169.Google Scholar
  16. 16.
    J. H. Simpson, D. M. Rice and F. E. Karasz, Macromol. submitted.Google Scholar
  17. 17.
    H. Mattoussi and F. E. Karasz, unpublished results, 1988.Google Scholar
  18. 18.
    S. J. DeTeresa, S. R. Allen, R. J. Farris and R. S. Porter, J. Mater. Sci. 19 (1984) 57.Google Scholar
  19. 19.
    E. J. Roche, T. Takahashi and E. L. Thomas, ASC Sympos. Ser. 141 (1980) 303.Google Scholar
  20. 20.
    M. G. Dobb, D. J. Johnson and B. P. Saville, Polymer 22 (1981) 960.Google Scholar
  21. 21.
    S. J. DeTeresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 23 (1988) 1886.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • Michael A. Masse
    • 1
  • David C. Martin
    • 1
  • Edwin L. Thomas
    • 1
  • Frank E. Karasz
    • 1
  • Jurgen H. Petermann
    • 2
  1. 1.Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Technical University of Hamburg-HarburgHamburg 90West Germany

Personalised recommendations