Advertisement

Journal of Materials Science

, Volume 18, Issue 1, pp 217–224 | Cite as

The microstructure of natural polycrystal diamond, carbonado and ballas

  • Y. Moriyoshi
  • M. Kamo
  • N. Setaka
  • Y. Sato
Papers

Abstract

Natural polycrystal diamonds, carbonado and bailas, were observed with an ultra-high voltage transmission electron microscope and the characteristic microstructures were discussed. Carbonado had randomly oriented dislocations with Burger's vectors, a/2 〈110〉. From diffraction patterns an inclusion in carbonado was thought to correspond to a mineral such as a serpentine. On the other hand, ballas had polygonized dislocations and dislocation loops and the inclusion in it was uncertain. The microstructural differences between the two diamonds were discussed from the view point of the conditions of diamond formation.

Keywords

Polymer Microstructure Electron Microscope Transmission Electron Microscope Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. T. Hall, Sci. 169 (1970) 868.Google Scholar
  2. 2.
    H. D. Stromberg and D. R. Stephens, Ceram. Butt. 49 (1970) 1030.Google Scholar
  3. 3.
    N. Suzuki, A. Nakaue and O. Okuma, J. Japan High Press. 11 (1974) 301.Google Scholar
  4. 4.
    H. Katzman and W. F. Libby, Sci. 172 (1971) 1132.Google Scholar
  5. 5.
    R. H. Wentorf Jr and W. A. Rocco, US Patent 3745623 (1973).Google Scholar
  6. 6.
    Idem, US Patent 3767371 (1973).Google Scholar
  7. 7.
    Y. Notsu, T. Nakajima and N. Kawai, Mater. Res. Bull. 12 (1977) 1079.Google Scholar
  8. 8.
    M. Akaishi, H. Kanda, Y. Sato, N. Setaka, T. Ohsawa and O. Fukunaga, J. Mater. Sci. 17 (1982) 193.Google Scholar
  9. 9.
    L. F. Trueb and C. B. Barrett, Amer. Mineral. 57 (1972) 1664.Google Scholar
  10. 10.
    J. D. Bolton and M. Redington, J. Mater. Sci. 15 (1980) 3150.Google Scholar
  11. 11.
    J. P. Hirth and J. Lothe, “Theory of Dislocations” (McGraw-Hill Book Co., New York, 1968) p. 355.Google Scholar
  12. 12.
    G. S. Woods, Phil. Mag. 23 (1971) 473.Google Scholar
  13. 13.
    K. Kijima and S. Shirasaki, J. Chem. Phys. 65 (1976) 2668.Google Scholar
  14. 14.
    J. D. Hong and R. F. Davis, J.Amer. Ceram. Soc. 63 (1980) 547.Google Scholar
  15. 15.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” 2nd edn (John Wiley and Sons, New York, 1976) p. 240.Google Scholar
  16. 16.
    Y. Moriyoshi, T. Ikegami, Y. Bando and S. Shirasaki, Z. Phys. Chem., Neue Folge 118 (1979) 187.Google Scholar
  17. 17.
    T. Evans, “Physical Properties of Diamond”, edited by R. Berman (Clarendon Press, Oxford, 1965) p. 116.Google Scholar
  18. 18.
    Y. Moriyoshi, M. Kamo, Y. Sato and N. Setaka, Cryst. Res. Tech. 16 (1981) 717.Google Scholar
  19. 19.
    T. Evans and R. K. Wild, Phil. Mag. 12 (1965) 479.Google Scholar
  20. 20.
    A. H. Clauer and B. A. Wilcox, J. Amer. Ceram. Soc. 59 (1976) 89.Google Scholar
  21. 21.
    Y. Moriyoshi, T. Ikegami, Y. Bando and S. Shirasaki, Z. Phys. Chem., Neue Folge 119 (1980) 239.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • Y. Moriyoshi
    • 1
  • M. Kamo
    • 1
  • N. Setaka
    • 1
  • Y. Sato
    • 1
  1. 1.National Institute for Research in Inorganic MaterialsIbarakiJapan

Personalised recommendations