Journal of Materials Science

, Volume 18, Issue 1, pp 64–80 | Cite as

Structure and oxygen-barrier properties of metallized polymer film

  • E. H. H. Jamieson
  • A. H. Windle


The structure of thin (10 to 50 nm) aluminium layers vacuum deposited on to polyester film is examined using both transmission electron microscopy and light microscopy. The density of pinhole defects in the aluminium coating, quantified by an image analysing microscope, is shown to determine the permeability of the film to oxygen. Finite element calculations of the effect of various pinhole diameters and densities on the permeability agree with experiment, and also show that the barrier properties of the polymer layers immediately adjacent to the metal coating are critical in determining the deleterious effect of pinhole defects.


Polymer Aluminium Permeability Transmission Electron Microscopy Deleterious Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kut, Metal Finishing 43 (1975) 568.Google Scholar
  2. 2.
    S. Kut, in “Science and Technology of Surface Coating”, edited by B. N. Chapman and J. C. Anderson (Academic Press, New York, 1974) p. 43.Google Scholar
  3. 3.
    S. Kut, Prod. Finish. 38(7) (1974) 45.Google Scholar
  4. 4.
    Idem, ibid, 38(9) (1974) 89.Google Scholar
  5. 5.
    L. P. Anderson and B. C. Kemp, Metallised Packaging Films in the US Market, 3rd ICI European Metallising Symposium, Venice (1978).Google Scholar
  6. 6.
    S. R. Veljkovic and P. Bibovic, Vacuum 27 (1978) 141.Google Scholar
  7. 7.
    D. W. Pashley, Adv. Phys. 14 (1965) 361.Google Scholar
  8. 8.
    J. Fridrich and K. Kohout, Thin Solid Films 7 (1971) 49.Google Scholar
  9. 9.
    W. B. Pennebaker, IBM Research Report, RC2015 (1968).Google Scholar
  10. 10.
    P. J. Chaudhari, Vac. Sci. Technol. 5 (9) (1966) 520.Google Scholar
  11. 11.
    M. Laugier, Thin Solid Films 79 (1981) 15.Google Scholar
  12. 12.
    J. C. Blair and P. B. Ghate, ibid. 72 (1980) 449.Google Scholar
  13. 13.
    S. Tolenski, “Multiple Beam Interferometry” (Clarendon Press, Oxford, 1948).Google Scholar
  14. 14.
    E. H. H. Jamieson, PhD thesis, Cambridge (1980).Google Scholar
  15. 15.
    H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures for the Polycrystalline and Amorphous Materials”, 2nd edn (Chapman and Hall, London, 1974).Google Scholar
  16. 16.
    B. J. Mulder, Vacuum 28 (1978) 11.Google Scholar
  17. 17.
    R. Clift, private communication (1979).Google Scholar
  18. 18.
    J. R. Lloyd and S. Nakahara, Thin Solid Films 45 (1977) 411.Google Scholar
  19. 19.
    I. A. Blech and E. S. Meieran, J. Apply. Phys. 40 (1969) 485.Google Scholar
  20. 20.
    M. M. Gudimov, Fiz. Khim. Mekh. Mater. 7(2) (1971) 59.Google Scholar
  21. 21.
    H. Brown and F. Escombe, Phil. Trans. Roy. Soc. Lond. B193 (1900) 223.Google Scholar
  22. 22.
    G. E. Myers, “Analytical Methods in Conduction Heat Transfer” (McGraw-Hill, New York, 1971).Google Scholar
  23. 23.
    D. N. deG. Allen and S. C. R. Dennis, J. Mech. Appl. Maths. 4(2) (1951) 2.Google Scholar
  24. 24.
    J. R. Whiteman, ibid. 21 (1973) 41; ibid. 23 (1973) 449.Google Scholar
  25. 25.
    R. M. Barrer, “Diffusion In and Through Solids” (Cambridge University Press, 1951).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • E. H. H. Jamieson
    • 1
  • A. H. Windle
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of CambridgeUK

Personalised recommendations