Advertisement

Journal of Materials Science

, Volume 27, Issue 6, pp 1651–1658 | Cite as

Transient cavity growth in ceramics under compression

  • K. S. Chan
  • R. A. Page
Papers

Abstract

The transient cavity growth behaviour of liquid phase-sintered ceramics subject to compressive loads is examined. Three possible sources of transient behaviour are suggested, and their ranges of applicability evaluated. By considering the values of the characteristic time for individual transient modes, it has been determined that transient cavity growth in ceramics probably originates from transient grain-boundary sliding. Assuming that the creep-induced cavities nucleate and grow on grain boundaries that are parallel to the loading axis, a transient cavity growth model is developed on the basis that the local stress which drives cavity growth is induced by transient sliding of adjacent grain boundaries. Results of the proposed model are compared with small-angle neutron scattering measurements of a hot-pressed silicon carbide and a liquid phase-sintered alumina, both of which contain a continuous, amorphous grain-boundary phase. The different cavity growth behaviours observed in these ceramics are discussed in conjunction with transient grain-boundary sliding.

Keywords

Polymer Alumina Silicon Carbide Growth Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Page and J. Lankford, J. Amer. Ceram. Soc.66 (1983) C-146.CrossRefGoogle Scholar
  2. 2.
    R. A. Page, J. Lankford and S. Spooner, J. Mater. Sci.19 (1984) 3360.CrossRefGoogle Scholar
  3. 3.
    Idem, Acta Metall.32 (1984) 1275.CrossRefGoogle Scholar
  4. 4.
    J. Lankford, K. S. Chan and R. A. Page, in “Fracture Mechanics of Ceramics,” edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 327.CrossRefGoogle Scholar
  5. 5.
    R. A. Page, J. Lankford, K. S. Chan, K. Hard-Man-Rhyne and S. Spooner, J. Amer. Ceram. Soc.70 (1987) 137.CrossRefGoogle Scholar
  6. 6.
    K. S. Chan and R. A. Page, Metall. Trans. A18A (1987) 1843.Google Scholar
  7. 7.
    K. S. Chan, J. Lankford and R. A. Page, Acta Metall.32 (1984) 1908.Google Scholar
  8. 8.
    R. Raj, Metall. Trans. A6A (1975) 1499.CrossRefGoogle Scholar
  9. 9.
    K. S. Chan and R. A. Page, J. Mater. Sci.25 (1990) 4622.CrossRefGoogle Scholar
  10. 10.
    B. L. Vaandrager and G. M. Pharr, Acta Metall.37 (1989) 1057.CrossRefGoogle Scholar
  11. 11.
    J. R. Dryden, D. Kucerovsky, D. S. Wilkinson and D. F. Watt, Acta Metall.37 (1989) 2007.CrossRefGoogle Scholar
  12. 12.
    R. Raj and M. F. Ashby, Metall. Trans. A2 (1971) 1113.CrossRefGoogle Scholar
  13. 13.
    R. Raj and C. K. Chyung, Acta Metall.29 (1981) 159.CrossRefGoogle Scholar
  14. 14.
    S. M. Wiederhorn, B. J. Hockey, R. F. Krause, Jr. and K. Jakus, J. Mater. Sci.21 (1986) 810.CrossRefGoogle Scholar
  15. 15.
    E. H. Rutter, Trans. Roy. Soc. A283 (1976) 203.CrossRefGoogle Scholar
  16. 16.
    K. S. Chan, R. A. Page and J. Lankford, Acta Metall.34 (1986) 2361.CrossRefGoogle Scholar
  17. 17.
    H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps” (Pergamon, New York, 1982) p. 98.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. S. Chan
    • 1
  • R. A. Page
    • 1
  1. 1.Southwest Research InstituteSan AntonioUSA

Personalised recommendations