Journal of Materials Science

, Volume 27, Issue 6, pp 1589–1598 | Cite as

Analysis of elastic interactions between holes

  • K. Davanas


The elastic interactions between holes, i.e. Pressurized, equilibrium and underpressurized bubbles or cavities, are analysed. By using rigorous mathematical methods, exact and easy-to-use formulae are derived for the description of the interactions. It is proven that, contrary to previous understanding, all elastic interactions between holes are repulsive. The magnitude of the repulsive force is found to increase for decreasing hole-to-hole separations. Thus bubble coalescence can be severely inhibited, which among other effects can lead to lower material swelling. Finally, the possible role of elastic repulsions in explaining the stability of the commonly observed bubble lattices is discussed.


Polymer Mathematical Method Repulsive Force Elastic Interaction Lower Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Barnes and D. J. Mazey, Proc. R. Soc.275A (1963) 47.Google Scholar
  2. 2.
    F. A. Nichols, J. Nucl. Mater.30 (1969) 143.CrossRefGoogle Scholar
  3. 3.
    J. D. Eshelby, Annalen der Physik1 (1958) 116.Google Scholar
  4. 4.
    A. B. Lidiard and R. S. Nelson, Phil. Mag.17 (1968) 425.CrossRefGoogle Scholar
  5. 5.
    J. R. Willis and R. Bullough, J. Nucl. Mater.32 (1969) 76.CrossRefGoogle Scholar
  6. 6.
    J. Rest, G. L. Hofman and R. C. Birchen, in Proceedings of the 14th International Symposium on the Effects of Radiation on Materials, Vol. 2, edited by N. H. Packan, R. E. Stoller and A. S. Kumar (ASTM, 1990).Google Scholar
  7. 7.
    K. Krishan, Rad. Eff.66 (1982) 121.CrossRefGoogle Scholar
  8. 8.
    P. B. Johnson and D. J. Mazey, Nature276 (1978) 595.CrossRefGoogle Scholar
  9. 9.
    P. B. Johnson, A. L. Malcolm and D. J. Mazey, ibid.329 (1987) 310.CrossRefGoogle Scholar
  10. 10.
    S. P. Timoshenko, “Theory of Elasticity” (McGraw-Hill, New York, 1951).Google Scholar
  11. 11.
    A. E. H. Love, “Mathematical Theory of Elasticity” (Cambridge University Press, New York, 1927).Google Scholar
  12. 12.
    E. Sternberg and M. A. Sadowsky, J. Appl. Mech.19 (1952) 19.Google Scholar
  13. 13.
    E. Tsuchida, I. Nakahara and M. Kodama, Bull. JSME19 (1976) 993.CrossRefGoogle Scholar
  14. 14.
    C.-B. Ling, J. Appl. Phys.19 (1948) 77.CrossRefGoogle Scholar
  15. 15.
    G. B. Jeffery, Phil. Trans.221A (1921) 265.CrossRefGoogle Scholar
  16. 16.
    G. N. Savin, “Stress Concentrations Around Holes” (Pergamon, London, 1961).Google Scholar
  17. 17.
    V. I. Dubinko, V. V. Slezov, A. V. Tur and V. V. Yanovskij, Rad. Eff.100 (1986) 85.CrossRefGoogle Scholar
  18. 18.
    V. I. Dubinko, A.V. Tur, A. V. Turkin and V. V. Yanovskij, J. Nucl. Mater.161 (1989) 57.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • K. Davanas
    • 1
  1. 1.Ministry of DefenceAgia Paraskevi, AthensGreece

Personalised recommendations