Journal of Materials Science

, Volume 27, Issue 6, pp 1546–1552 | Cite as

Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials

  • F. M. Labajos
  • V. Rives
  • M. A. Ulibarri


The synthesis and characterization of hydrotalcite-like materials is described. As the time to which the samples have been submitted to a hydrothermal treatment is prolonged, a change in the Mg/Al ratio is observed, together with a more ordered structure of the species existing in the interlayer space. Calcination at increasing temperatures leads to decomposition of this compound, with the final formation of MgO and MgAl2O4. Changes taking place during these processes have been related to the decrease observed in the specific surface area of the samples upon prolonging the hydrothermal treatment, as well as its development and further decrease upon thermal treatment.


Polymer Specific Surface Calcination Physicochemical Property Thermal Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Fitknecht, Helv. Chim. Acta25 (1942) 131.CrossRefGoogle Scholar
  2. 2.
    W. Feitknecht and G. Fischer, ibid.18 (1935) 555.CrossRefGoogle Scholar
  3. 3.
    W. T. Reichle, Solid State Ionics22 (1986) 135.CrossRefGoogle Scholar
  4. 4.
    G. Lagaly, ibid.22 (1986) 43.CrossRefGoogle Scholar
  5. 5.
    S. Miyata and T. Hirose, Clays & Clay Min.26 (1978) 441.CrossRefGoogle Scholar
  6. 6.
    E. C. Kruissink, L. L. Van Reijden and J. R. H. Ross, JCS FaradayI77 (1981) 649.CrossRefGoogle Scholar
  7. 7.
    L. E. Almazora, J. R. H. Ross, E. C. Kruissink and L. L. Van Reijden, ibid.77 (1981) 665.CrossRefGoogle Scholar
  8. 8.
    T. Nakatsuka, H. Kawasaki, S. Yamashita and S. Kokjiya, Bull. Chem. Soc. Jpn52 (1979) 244.CrossRefGoogle Scholar
  9. 9.
    W. T. Reichle, J. Catal.94 (1985) 547.CrossRefGoogle Scholar
  10. 10.
    R. Spinicci and A. Ulibarri, Mater. Chem. Phys.26 (1990) 1.CrossRefGoogle Scholar
  11. 11.
    W. Suzuki, M. Okamoto and Y. Ono, Chem. Lett. (1989) 1485.Google Scholar
  12. 12.
    Idem., ibid. (1989) 1487.Google Scholar
  13. 13.
    H. Kopka, K. Beneke and G. Lagaly, J. Colloid Interf. Sci.123 (1988) 427.CrossRefGoogle Scholar
  14. 14.
    K. Chibwe and W. Jones, JCS Chem. Commun. (1989) 926.Google Scholar
  15. 15.
    T. Kwon, A. Tsigdinos and T. J. Pinnavaia, J. Amer. Chem. Soc.110 (1988) 3653.CrossRefGoogle Scholar
  16. 16.
    G. W. Brindley and S. Kikkawa, Amer. Mineral.64 (1979) 836.Google Scholar
  17. 17.
    M. J. Hernandez-Moreno, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Minerals12 (1985) 34.Google Scholar
  18. 18.
    K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, 4th Edn (Wiley, New York, 1986) p. 121.Google Scholar
  19. 19.
    R. A. Nyquist and R. O. Kagel, “Infrared Spectra of Inorganic Compounds” (Academic, New York, 1971) pp. 206–207.Google Scholar
  20. 20.
    D. L. Bish and G. W. Brindley, Amer. Mineral.62 (1977) 458.Google Scholar
  21. 21.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. Pierotti, J. Rouquerol and T. Sieminiewska, Pure Appl. Chem.57 (1985) 603.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • F. M. Labajos
    • 1
  • V. Rives
    • 1
  • M. A. Ulibarri
    • 2
  1. 1.Dipartamento de Química InorgánicaUniversidad de Salamanca, Facultad de FarmaciaSalamancaSpain
  2. 2.Dipartamento de Química Inorgánica e Ingeniería QuímicaUniversidad de Córdoba, Facultad de CienciasCórdobaSpain

Personalised recommendations