Time-dependent elastic modulus recovery measurement on thermally shocked SiC fibre-aluminosilicate composites, machinable glass ceramics and polycrystalline alumina
Papers
First Online:
- 160 Downloads
- 5 Citations
Abstract
Time-dependent partial recoveries in Young's modulus were observed for thermally shocked specimens of three ceramic materials: an SiC fibre-aluminosilicate composite, a machinable glass-ceramic, and a polycrystalline alumina. The observed Young's modulus recovery is likely to be due to room-temperature microcrack healing. The room-temperature modulus recovery rates measured in this study are compared to the physical property recovery rates obtained from an analysis of data in the literature for other cracked ceramics.
Keywords
Polymer Alumina Elastic Modulus Recovery Rate Ceramic Material
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.F. Delale, Engng Frac. Mech.31 (1988) 145.CrossRefGoogle Scholar
- 2.
- 3.B. A. Boley and J. H. Weiner, “Theory of Thermal Stresses” (Wiley, New York, 1960) Ch. 3.Google Scholar
- 4.A. H. Heuer, N. Classen, W. M. Kriven and M. Ruhle, J. Amer. Ceram. Soc.65 (1982) 642.CrossRefGoogle Scholar
- 5.
- 6.
- 7.
- 8.H. P. Kirchner, ibid.67 (1984) 347.CrossRefGoogle Scholar
- 9.
- 10.W. P. Rogers, A. F. Emery, R. C. Bradt and A. S. Kobayashi, ibid.70 (1987) 406.CrossRefGoogle Scholar
- 11.K. Matsushida, S. Kuratani, T. Okamoto and M. Shimada, J. Mater. Sci. Lett.3 (1984) 345.CrossRefGoogle Scholar
- 12.S. Nishijima, K. Matsushita, T. Okada, T. Okamoto and T. Hagihara, in “Nonmetallic Materials and Composites at Low Temperature 3”, edited by G. Hartwig and D. Evans (Plenum, New York, 1986) pp. 143–151.CrossRefGoogle Scholar
- 13.Y. Kim, W. J. Lee and E. D. Case, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, OH, 1990) pp. 479–486.Google Scholar
- 14.Idem., in Proceedings of the American Society for Composites 5th Technical Conference, June 1990, East Lansing, MI (Tectonic Publishing Co., Lancaster, PA, 1990) pp. 871–81.Google Scholar
- 15.
- 16.Idem., J. Mater. Sci. in press.Google Scholar
- 17.E. D. Case, J. R. Smyth and O. Hunter Jr, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 507–530.CrossRefGoogle Scholar
- 18.T. K. Gupta, J. Amer. Ceram. Soc.59 (1976) 259.CrossRefGoogle Scholar
- 19.Idem., ibid.61 (1978) 191.CrossRefGoogle Scholar
- 20.Idem., ibid.59 (1976) 448.CrossRefGoogle Scholar
- 21.
- 22.
- 23.
- 24.T. K. Gupta, ibid.58 (1975) 143.CrossRefGoogle Scholar
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.A. I. Bailey, J. Appl. Phys.32 (1961) 1407.CrossRefGoogle Scholar
- 32.R. B. Leonesio, J. Amer. Ceram. Soc.55 (1972) 437.CrossRefGoogle Scholar
- 33.
- 34.
- 35.M. Inagaki, K. Urashima, S. Toyomasu, Y. Goto and M. Sakai, J. Amer. Ceram. Soc.68 (1985) 704.CrossRefGoogle Scholar
- 36.G. R. Pulliam, ibid.42 (1959) 477.CrossRefGoogle Scholar
- 37.
- 38.
- 39.
- 40.
- 41.G. Pickett, ASTM Proc.45 (1945) 846.Google Scholar
- 42.E. Schreiber, O. L. Anderson and N. Soga, “Elastic Constants and Their Measurement” (McGraw-Hill, New York, 1974) Ch. 4.Google Scholar
- 43.D. P. H. Hasselman, “Tables for the Computation of Shear Modulus and Young's Modulus of Rectangular Prisms” (Carborundum Co., Niagara Falls, New York, 1961).Google Scholar
Copyright information
© Chapman & Hall 1992