Advertisement

Journal of Materials Science

, Volume 27, Issue 6, pp 1537–1545 | Cite as

Time-dependent elastic modulus recovery measurement on thermally shocked SiC fibre-aluminosilicate composites, machinable glass ceramics and polycrystalline alumina

  • Y. Kim
  • E. D. Case
Papers

Abstract

Time-dependent partial recoveries in Young's modulus were observed for thermally shocked specimens of three ceramic materials: an SiC fibre-aluminosilicate composite, a machinable glass-ceramic, and a polycrystalline alumina. The observed Young's modulus recovery is likely to be due to room-temperature microcrack healing. The room-temperature modulus recovery rates measured in this study are compared to the physical property recovery rates obtained from an analysis of data in the literature for other cracked ceramics.

Keywords

Polymer Alumina Elastic Modulus Recovery Rate Ceramic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Delale, Engng Frac. Mech.31 (1988) 145.CrossRefGoogle Scholar
  2. 2.
    R. W. Davidge and T. J. Green, J. Mater. Sci.3 (1968) 629.CrossRefGoogle Scholar
  3. 3.
    B. A. Boley and J. H. Weiner, “Theory of Thermal Stresses” (Wiley, New York, 1960) Ch. 3.Google Scholar
  4. 4.
    A. H. Heuer, N. Classen, W. M. Kriven and M. Ruhle, J. Amer. Ceram. Soc.65 (1982) 642.CrossRefGoogle Scholar
  5. 5.
    Y. Fu, A. G. Evans and W. M. Kriven, ibid.67 (1984) 626.CrossRefGoogle Scholar
  6. 6.
    E. D. Case, K. M. Louie and A. G. Evans, J. Mater. Sci. Lett.3 (1984) 879.CrossRefGoogle Scholar
  7. 7.
    H. P. Kirchner and E. D. Issacson, J. Amer. Ceram. Soc.65 (1982) 55.CrossRefGoogle Scholar
  8. 8.
    H. P. Kirchner, ibid.67 (1984) 347.CrossRefGoogle Scholar
  9. 9.
    H. Ohira and R. C. Bradt, ibid.71 (1988) 35.CrossRefGoogle Scholar
  10. 10.
    W. P. Rogers, A. F. Emery, R. C. Bradt and A. S. Kobayashi, ibid.70 (1987) 406.CrossRefGoogle Scholar
  11. 11.
    K. Matsushida, S. Kuratani, T. Okamoto and M. Shimada, J. Mater. Sci. Lett.3 (1984) 345.CrossRefGoogle Scholar
  12. 12.
    S. Nishijima, K. Matsushita, T. Okada, T. Okamoto and T. Hagihara, in “Nonmetallic Materials and Composites at Low Temperature 3”, edited by G. Hartwig and D. Evans (Plenum, New York, 1986) pp. 143–151.CrossRefGoogle Scholar
  13. 13.
    Y. Kim, W. J. Lee and E. D. Case, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, OH, 1990) pp. 479–486.Google Scholar
  14. 14.
    Idem., in Proceedings of the American Society for Composites 5th Technical Conference, June 1990, East Lansing, MI (Tectonic Publishing Co., Lancaster, PA, 1990) pp. 871–81.Google Scholar
  15. 15.
    W. J. Lee and E. D. Case, Mater. Sci. EngngA119 (1989) 113.CrossRefGoogle Scholar
  16. 16.
    Idem., J. Mater. Sci. in press.Google Scholar
  17. 17.
    E. D. Case, J. R. Smyth and O. Hunter Jr, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 507–530.CrossRefGoogle Scholar
  18. 18.
    T. K. Gupta, J. Amer. Ceram. Soc.59 (1976) 259.CrossRefGoogle Scholar
  19. 19.
    Idem., ibid.61 (1978) 191.CrossRefGoogle Scholar
  20. 20.
    Idem., ibid.59 (1976) 448.CrossRefGoogle Scholar
  21. 21.
    A. G. Evans and E. A. Charles, Acta Metall.25 (1977) 919.CrossRefGoogle Scholar
  22. 22.
    C. F. Yen and R. L. Coble, J. Amer. Ceram. Soc.55 (1972) 507.CrossRefGoogle Scholar
  23. 23.
    F. F. Lange and K. C. Radford, ibid.53 (1970) 420.CrossRefGoogle Scholar
  24. 24.
    T. K. Gupta, ibid.58 (1975) 143.CrossRefGoogle Scholar
  25. 25.
    J. T. A. Roberts and B. J. Wrona, ibid.56 (1973) 297.CrossRefGoogle Scholar
  26. 26.
    G. Bandyopadhyay and J. T. A. Roberts, ibid.59 (1976) 415.CrossRefGoogle Scholar
  27. 27.
    G. Bandyopadhyay and C. R. Kennedy, ibid.60 (1977) 48.CrossRefGoogle Scholar
  28. 28.
    R. N. Singh and J. L. Routbort, ibid.62 (1979) 128.CrossRefGoogle Scholar
  29. 29.
    Y. Ohya, Z. Nakagawa and K. Hamano, ibid.71 (1988) c-232.CrossRefGoogle Scholar
  30. 30.
    M. Tomozawa, K. Hirao and P. E. Bean, ibid.69 (1986) c-186.CrossRefGoogle Scholar
  31. 31.
    A. I. Bailey, J. Appl. Phys.32 (1961) 1407.CrossRefGoogle Scholar
  32. 32.
    R. B. Leonesio, J. Amer. Ceram. Soc.55 (1972) 437.CrossRefGoogle Scholar
  33. 33.
    T. A. Michalske and E. R. Fuller, ibid.68 (1985) 586.CrossRefGoogle Scholar
  34. 34.
    B. Stavrinidis and D. G. Holloway, Phys. Chem. Glasses24 (1) (1983) 19.Google Scholar
  35. 35.
    M. Inagaki, K. Urashima, S. Toyomasu, Y. Goto and M. Sakai, J. Amer. Ceram. Soc.68 (1985) 704.CrossRefGoogle Scholar
  36. 36.
    G. R. Pulliam, ibid.42 (1959) 477.CrossRefGoogle Scholar
  37. 37.
    D. H. Roach, S. Lathabai and B. R. Lawn, ibid.71 (1988) 97.CrossRefGoogle Scholar
  38. 38.
    R. L. Lehman, R. E. Hill Jr and G. E. Sigel Jr, ibid.12 (1989) 474.CrossRefGoogle Scholar
  39. 39.
    M. K. C. Holden and V. D. Frechette, ibid.12 (1989) 2189.CrossRefGoogle Scholar
  40. 40.
    H. M. Chou and E. D. Case, Mater. Sci. Engng100 (1988) 7.CrossRefGoogle Scholar
  41. 41.
    G. Pickett, ASTM Proc.45 (1945) 846.Google Scholar
  42. 42.
    E. Schreiber, O. L. Anderson and N. Soga, “Elastic Constants and Their Measurement” (McGraw-Hill, New York, 1974) Ch. 4.Google Scholar
  43. 43.
    D. P. H. Hasselman, “Tables for the Computation of Shear Modulus and Young's Modulus of Rectangular Prisms” (Carborundum Co., Niagara Falls, New York, 1961).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Y. Kim
    • 1
  • E. D. Case
    • 1
  1. 1.Department of Metallurgy, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations