Advertisement

Journal of Materials Science

, Volume 27, Issue 6, pp 1491–1498 | Cite as

Strength, toughness and R-curve behaviour of SiC whisker-reinforced composite Si3N4 with reference to monolithic Si3N4

  • S. R. Choi
  • J. A. Salem
Papers

Abstract

The flexural strength and fracture toughness of 30 vol% SiC whisker-reinforced Si3N4 material were determined as a function of temperature from 25 to 1400°C in an air environment. It was found that both strength and toughness of the composite material were almost the same as those of the monolithic counterpart. The room-temperature strength was retained up to 1100°C; however, appreciable strength degradation started at 1200°C and reached a maximum at 1400°C due to stable crack growth. In contrast, the fracture toughness of the two materials was independent of temperature with an average value of 5.66 MPam1/2. It was also observed that the composite material exhibited no rising R-curve behaviour at room temperature, as was the case for the monolithic material. These results indicate that SiC whisker addition to the Si3N4 matrix did not provide any favourable effects on strength, toughness and R-curve behaviour.

Keywords

Polymer Composite Material Fracture Toughness Flexural Strength Favourable Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Becher and G. C. Wei, J. Amer. Ceram. Soc.67 (1984) c-267.CrossRefGoogle Scholar
  2. 2.
    G. C. Wei and P. F. Becher, Amer. Ceram. Soc. Bull.64 (1985) 298.Google Scholar
  3. 3.
    J. Homeny, W. L. Vaughn and M. K. Ferber, ibid.66 (1987) 333.Google Scholar
  4. 4.
    S. Lio, M. Watanabe, M. Matsubara and Y. Matsuo, J. Amer. Ceram. Soc.72 (1989) 188.CrossRefGoogle Scholar
  5. 5.
    T. N. Tiegs and P. F. Becher, ibid.70 (1987) c-109.CrossRefGoogle Scholar
  6. 6.
    P. F. Becher, P. Angelini, W. H. Warwick and T. N. Tiegs, ibid.73 (1990) 91.CrossRefGoogle Scholar
  7. 7.
    T. N. Tiegs and P. F. Becher, in “Tailoring Multiphase and Composite Ceramics”, Materials Science Research, Vol. 20 (Plenum, New York, 1986) p. 639.CrossRefGoogle Scholar
  8. 8.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, J. Amer. Ceram. Soc.71 (1988) 1050.CrossRefGoogle Scholar
  9. 9.
    G. H. Campbell, M. Ruhle, B. J. Dalgleish and A. G. Evans, ibid.73 (1990) 521.CrossRefGoogle Scholar
  10. 10.
    P. D. Shalek, J. J. Petrovic, G. F. Hurley and F. D. Gac, Amer. Ceram. Soc. Bull.65 (1986) 351.Google Scholar
  11. 11.
    S. Buljan, J. G. Baldoni and M. L. Huckabee, ibid.66 (1987) 347.Google Scholar
  12. 12.
    G. Pezzotti, I. Tanaka, T. Okamoto, M. Kozumi and Y. Miyamoto, J. Amer. Ceram. Soc.72 (1989) c-1461.CrossRefGoogle Scholar
  13. 13.
    R. Lunderberg, L. Kahlman, R. Pompe and R. Carlsson, Amer. Ceram. Soc. Bull.66 (1987) 330.Google Scholar
  14. 14.
    J. A. Salem, NASA TM-102423 (National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, 1990).Google Scholar
  15. 15.
    J. E. Ritter, S. R. Choi and K. Jakus, unpublished work, University of Massachusetts (1989).Google Scholar
  16. 16.
    Y. Akimune, Y. Katano and K. Matoba, J. Amer. Ceram. Soc.72 (1989) 791.CrossRefGoogle Scholar
  17. 17.
    R. D. Nixon, D. A. Koester, S. Chevacharoenkul and R. F. Davis, Compos. Sci. Technol.37 (1990) 313.CrossRefGoogle Scholar
  18. 18.
    J. G. Baldoni and S. T. Buljan, in “Ceramic Materials and Components for Engines”, Proceedings of 3rd International Symposium, Las Vegas, November 1988 (American Ceramic Society, Westerville, OH, 1989) p. 786.Google Scholar
  19. 19.
    M. Backhaus-Ricoult, J. Castaing and J. L. Roubort, Rev. Phys. Appl.23 (1988) 10.CrossRefGoogle Scholar
  20. 20.
    S. Suresh, L. X. Han and J. J. Petrovic, J. Amer. Ceram. Soc.71 (1988) c-158.CrossRefGoogle Scholar
  21. 21.
    D. Munz, R. T. Bubsey and J. L. Shannon, ibid.63 (1980) 300.CrossRefGoogle Scholar
  22. 22.
    T. Nose and T. Fujii, ibid.71 (1988) 323.CrossRefGoogle Scholar
  23. 23.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, ibid.64 (1981) 539.CrossRefGoogle Scholar
  24. 24.
    K. F. Krause, ibid.71 (1988) 338.CrossRefGoogle Scholar
  25. 25.
    J. E. Ritter, N. Bandyopadhyay and K. Jakus, Amer. Ceram. Soc. Bull.60 (1981) 798.Google Scholar
  26. 26.
    S. R. Choi and J. Salem, in “Advanced Composite Materials”, Ceramic Transactions, Vol. 19 (American Ceramic Society, Westerville, OH, 1991) p. 741.Google Scholar
  27. 27.
    J. J. Petrovic, J. V. Milewski, D. L. Rohr and F. D. Gac, J. Mater. Sci.20 (1985) 1167.CrossRefGoogle Scholar
  28. 28.
    J. Homeny, W. L. Vaughn and M. K. Ferber, J. Amer. Ceram. Soc.73 (1990) 394.CrossRefGoogle Scholar
  29. 29.
    R. F. Krause, E. R. Fuller and J. F. Rhodes, ibid.73 (1990) 559.CrossRefGoogle Scholar
  30. 30.
    J. E. Ritter, S. R. Choi, K. Jakus, P. J. Whalen and R. G. Rateick, J. Mater. Sci. (1991) in press.Google Scholar
  31. 31.
    C. W. Li and Y. Yamanis, Ceram. Eng. Sci. Proc.10 (1989) 632.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. R. Choi
    • 1
    • 2
  • J. A. Salem
    • 2
  1. 1.Cleveland State UniversityClevelandUSA
  2. 2.NASA Lewis Research CenterClevelandUSA

Personalised recommendations