Journal of Materials Science

, Volume 27, Issue 6, pp 1464–1468 | Cite as

Sol-gel prepared Ni-alumina composite materials

Part I Microstructure and mechanical properties
  • E. Breval
  • Z. Deng
  • S. Chiou
  • C. G. Pantano


The sol-gel method has been utilized for the preparation of dense, homogeneous ceramic-metal composites with up to 50% Ni in Al2O2. Examination by SEM and TEM shows that the materials consist of micrometre-size Al2O3 with metallic Ni in isolated regions from ∼50 μm down to nanometre size. The density ranges from ∼97% (10% Ni) to ∼74% (50% Ni) of the theoretical number. The hardness decreases from ∼18 GPa for pure alumina to ∼10 GPa for alumina containing 50% Ni. The fracture toughness increases significantly from K1c=3–4 MPa m1/2 to K1c=∼8.5 MPa m1/2. The elastic and shear moduli decrease from E=∼400 GPa and G=∼160 GPa for pure alumina to E=∼320 GPa and G=∼135 GPa when containing 50% Ni. The electrical resistivity is ∼106ωm with 10 to 40% Ni but decreases drastically at 50% Ni content.


Polymer Alumina Al2O3 Composite Material Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Roy and R. Roy, Mater. Res. Bull.19 (1984) 169.CrossRefGoogle Scholar
  2. 2.
    A. Kazakos-Kijowsk, S. Komarneni and R. Roy, in “Better Ceramics Through Chemistry III”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, Mater. Res. Soc. Symp. Proc.121 (1988) p. 245.Google Scholar
  3. 3.
    R. Roy, S. Komarneni and D. M. Roy, in “Better Ceramics Through Chemistry”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, Mater. Res. Soc. Symp. Proc.32 (1984) p. 347.Google Scholar
  4. 4.
    E. Breval, G. C. Dodds and C. G. Pantano, Mater. Res. Bull.20 (1985) 1191.CrossRefGoogle Scholar
  5. 5.
    E. Breval, G. C. Dodds and N. H. Macmillan, ibid.20 (1985) 413.CrossRefGoogle Scholar
  6. 6.
    B. E. Yoldas, J. Amer. Ceram. Soc.65 (1982) 387.CrossRefGoogle Scholar
  7. 7.
    K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett.1 (1961) 13.CrossRefGoogle Scholar
  8. 8.
    A. Vary, in “International Advances in Nondestructive Testing”, edited by W. J. McGonnacle and E. Ronald, 5 (Gordon and Breach, New York, 1988) pp. 1–38.Google Scholar
  9. 9.
    S. Chiou, Thesis, Pennsylvania State University (1990).Google Scholar
  10. 10.
    Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids11 (1963) 127.CrossRefGoogle Scholar
  11. 11.
    “Handbook of Physics and Chemistry”, 50th Edn (Chemical Rubber Co., Cleveland, 1970) p. D 53.Google Scholar
  12. 12.
    G. W. C. Kaye and T. H. Laby, “Tables of Physical and Chemical Constants” (Longman, London, 1966) pp. 33, 91–93.Google Scholar
  13. 13.
    M. K. Aghajanian, E. Breval, J. S. Jennings and N. H. Macmillan, J. Mater. Sci.21 (1986) 2819.CrossRefGoogle Scholar
  14. 14.
    K. T. Faber, Ceram. Eng. Sci. Proc.5 (May–June 1984) 409.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • E. Breval
    • 1
  • Z. Deng
    • 2
  • S. Chiou
    • 3
  • C. G. Pantano
    • 2
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations