Journal of Philosophical Logic

, Volume 14, Issue 1, pp 57–107

Natural deduction and arbitrary objects

  • Kit Fine


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BorkowskiL. and SłupeckiJ., ‘A logical system based on rules and its application in teaching mathematical logic’, Studia Logica 7 (1958) 71–106.Google Scholar
  2. [2]
    CopiI., Symbolic Logic, Macmillan, New York, 1st Ed. (1954), 2nd Ed. (1961).Google Scholar
  3. [3]
    FineK., ‘A defence of arbitrary objects’, Proceedings of the Aristotelian Society, supp. vol. LVII, 55–77. (1983); also to appear in Varieties of Formal Semantics (eds F. Landman and F. Veltman), GRASS III, Fovis Publications Dordrecht· Cinnaminson (1984).Google Scholar
  4. [4]
    Fine, K., Reasoning with Arbitrary Objects, to appear in the Aristotelian Society Monograph Series (1984).Google Scholar
  5. [5]
    HailperinT., ‘A Theory of Restricted Quantification Part I’, J. Symbolic Logic 22 (1957) 17–35, ‘Part II’, J. Symbolic Logic 22 (1957) 113–129.Google Scholar
  6. [6]
    Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. I, Berlin (1934).Google Scholar
  7. [7]
    KalishD., ‘Review’, Journal of Symbolic Logic 32 (1967) 254.Google Scholar
  8. [8]
    Kalish, D. and Montague, R., Logic: Techniques of Formal Reasoning, New York (1964).Google Scholar
  9. [9]
    Lemmon, E. J., Beginning Logic, London (1967).Google Scholar
  10. [10]
    LemmonE. J., ‘Quantifier rules and natural deduction’, Mind 70 (1961) 235–238.Google Scholar
  11. [11]
    LemmonE. J., ‘A further note on natural deduction’, Mind 74 (1965), 594–597.Google Scholar
  12. [12]
    PrawitzD., Natural Deduction: A Proof-Theoretic Study, Almquist & Wiksell, Stockholm (1965).Google Scholar
  13. [13]
    QuineW. V. O., ‘On natural deduction’, J. Symbolic Logic 15 (1950) 93–102.Google Scholar
  14. [14]
    QuineW. V. O., Methods of Logic, Routledge & Kegan Paul, London (1952).Google Scholar
  15. [15]
    RoutleyR., ‘A simple natural deduction system’, Logique et Analyse 12 (1969) 129–152.Google Scholar
  16. [16]
    SchagrinM., ‘A Dilemma for Lemmon’ Mind, ns. vol. 72 (1963) 584–585.Google Scholar
  17. [17]
    SuppesP., Introduction to Logic, Van Nostrand, Princeton (1957).Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Kit Fine
    • 1
  1. 1.Philosophy DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations