Advertisement

European Journal of Clinical Pharmacology

, Volume 25, Issue 4, pp 475–480 | Cite as

Hypotensive effects of diltiazem to normals and essential hypertensives

  • K. Aoki
  • K. Sato
  • S. Kondo
  • M. Yamamoto
Originals

Summary

The hypotensive effect of acute and long-term, intravenous and oral administration of the calcium antagonist, diltiazem, was investigated in 8 normotensive volunteers and 55 patients with essential hypertension. Diltiazem i.v. infusion of 45 mg/h (0.5 mg/min, then 1.0 mg/min, each for 30 min rapidly decreased both blood pressure (BP) from 164±22/98±8 to 144±15/86±9 mmHg (mean±SD) and total peripheral resistance from 32.6±8.4 to 25.3±5.4 mmHg/l/min (p<0.001), and increased stroke volume from 58.2±9.5 to 64.2±8.6 ml/beat (p<0.05). It altered neither heart rate nor cardiac output in the hypertensives (n=10). Oral diltiazem 60 mg rapidly decreased BP from 155±10/103±6 to 142±12/90±8 mmHg after 3 hours (p<0.01/p<0.001) in hypertensives (n=8), but not in normotensives (n=8). Diltiazem 90 mg p.o. decreased BP from 157±15/102±9 to 129±13/83±8 mmHg (p<0.01) in hypertensives (n=15), and reduced the heart rate from 71±8 to 65±8 beats/min (p<0.01). The drug did not change plasma renin activity either in normotensives or hypertensives. The fall in diastolic BP was correlated with the plasma diltiazem concentration (r=0.910, n=6, p<0.05). Long-term treatment with diltiazem 30mg t.d.s. decreased BP from 163±12/104±8 to 145±9/88±9 mmHg (p<0.001, n=13), and 60mg t.d.s. decreased BP from 169±15/102±6 to 148±13/87±8 mmHg (p<0.001, n=8), and significantly reduced the heart rate (p<0.01) in hypertensives. Thus, the hypotensive action of diltiazem, which is due to arterial dilatation, is effective, either on intravenous or oral administration, during acute and long-term treatment of essential hypertension.

Key words

hypotensive effect diltiazem plasma level normotension essential hypertension plasma renin arterial vasodilatation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17: 149Google Scholar
  2. 2.
    Zsotér TT (1980) Calcium antagonists. Am Heart J 99: 805Google Scholar
  3. 3.
    Ellrodt G, Chew CYC, Singh BN (1980) Therapeutic implications of slow-channel blocker in cardiovasculatory disorders. Circulation 62: 669Google Scholar
  4. 4.
    Millard RW, Lathrop DA, Grupp G, Ashraf M, Grupp IL, Schwartz A (1982) Differential cardiovascular effects of calcium channel agents: potential mechanisms. Am J Cardiol 49: 499Google Scholar
  5. 5.
    Mitchell LB, Schroeder JS, Mason JW (1982) Comparative clinical electrophysiologic effects of diltiazem, verapamil and nifedipine: A review. Am J Cardiol 49: 629Google Scholar
  6. 6.
    Henry PD (1980) Comparative pharmacology of calcium antagonists: Nifedipine, verapamil and diltiazem. Am J Cardiol 46: 1047Google Scholar
  7. 7.
    Yamaguchi I, Ikezawa K, Takada T, Kiyomoto A (1974) Studies on a new 1,5-benzothiazepine derivative (CRD-401). VI. Effects on renal blood flow and renal function. Jpn J Pharmacol 24: 511Google Scholar
  8. 8.
    Murakami M, Murakami E, Takekoshi N, Tsuchiya M, Kin T, Onoe T, Takeuchi N, Funatsu T, Hara S, Ishise S, Mifune J, Maeda M (1972) Antihypertensive effect of 4(-2′-Nitrophenyl)-2, 6-dimethyl-1, 4-dihydropyridine-3, 5-dicarbonic acid dimethylester (Nifedipine, Bay-a1040), a new coronary dilator. Jpn Heart J 13: 128Google Scholar
  9. 9.
    Aoki K, Yoshida T, Kato S, Tazumi K, Sato I, Takikawa K, Hotta K (1976) Hypotensive action and increased plasma renin activity by Ca2+ antagonist (Nifedipine) in hypertensive patients. Jpn Heart J 17: 479Google Scholar
  10. 10.
    Aoki K, Kondo S, Mochizuki A, Yoshida T, Kato S, Kato K, Takikawa K (1978) Antihypertensive effect of cardiovascular Ca2+-antagonist in hypertensive patients in the absence and presence of beta-adrenergic blockade. Am Heart J 96: 218Google Scholar
  11. 11.
    Aoki K, Kondo S, Mochizuki A, Sato K, Yoshida T, Kato S, Kato K (1979) Ca2+-antagonist therapy for hypertension in combination with beta-blockade: A new concept of essential hypertension. In: Yamori Y, Lovenberg W, Freis ED (eds) Prophylactic Approach to Hypertensive Diseases. Raven Press, New York, pp 377–386Google Scholar
  12. 12.
    Aoki K, Sato K, Kawaguchi Y, Yamamoto M (1982) Acute and long-term hypotensive effects and plasma concentrations of nifedipine in patients with essential hypertension. Eur J Clin Pharmacol 23: 197Google Scholar
  13. 13.
    Aoki K, Sato K (1982) Acute hypotensive, hemodynamic effects of long-term treatment with niludipine, a Ca2+-antagonist, in patients with essential hypertension: Niludipine monotherapy and combination with a β-blocker and a diuretic. Arzneim Forsch 32 (II): 1141Google Scholar
  14. 14.
    Aoki K, Kawaguchi Y, Sato K, Kondo S, Yamamoto M (1982) Clinical and pharmacological properties of calcium antagonists in essential hypertension in humans and spontaneously hypertensive rats. J Cardiovasc Pharmacol 4 (Suppl 3): S298Google Scholar
  15. 15.
    Guazzi MD, Fiorentini C, Olivari MT, Bartorelli A, Necchi G, Polese A (1980) Short- and long-term efficacy of a calcium-antagonist agent (nifedipine) combined with methyldopa in the treatment of severe hypertension. Circulation 61: 913Google Scholar
  16. 16.
    Pedersen OL, Mikkelsen E, Christensen NJ, Kornerup HJ, Pedersen EB (1979) Effect of nifedipine on plasma renin, aldosterone and catecholamines in arterial hypertension. Eur J Clin Pharmacol 15: 235Google Scholar
  17. 17.
    Ikeda M (1979) Double-blind studies on diltiazem in essential hypertensive patients receiving thiazide therapy. In: Bing RJ (ed) New Drug Therapy with a Calcium Antagonist, Diltiazem Hakone Symposium '78. Excerpta Medica, Amsterdam, pp 243–253Google Scholar
  18. 18.
    Burris JF, Notargiacomo AV, Papademetriou V, Freis ED (1982) Acute and short-term effects of a new calcium antagonist in hypertension. Hypertension 4 (Suppl II): II-32Google Scholar
  19. 19.
    Kohno K, Takeuchi Y, Etoh A, Noda K (1977) Pharmacokinetics and bioavailability of diltiazem (CRD-401) in dog. Arzneim Forsch 27 (II): 1424Google Scholar
  20. 20.
    Hulthén UL, Bolli P, Amann FW, Kiowski W, Bühler FR (1982) Enhanced vasodilatation in essential hypertension by calcium channel blockade with verapamil. Hypertension 4 (Suppl II): II-26Google Scholar
  21. 21.
    Kawaguchi Y, Aoki K, Yamamoto M, Hotta K (1982) Calcium-induced contraction and effect of calcium antagonist on arterial smooth muscle of spontaneously hypertensive rats. Clin Sci 63: 83sGoogle Scholar
  22. 22.
    Mochizuki A, Aoki K, Kondo S, Mizuno T, Hotta K (1979) Specificity of tension development and calcium flux of the arterial smooth muscle in SHR. Jpn Heart J 20 (Suppl 1): 225Google Scholar
  23. 23.
    Nghiem C, Swamy VC, Triggle DJ (1982) Inhibition by methoxy-verapamil of the responses of smooth muscle from spontaneously hypertensive and normotensive rats. Blood Vessels 19: 177Google Scholar
  24. 24.
    Pedersen OL, Mikkelsen E, Andersson KE (1978) Effects of extracellular calcium on potassium and noradrenaline-induced contraction in the aorta of spontaneously hypertensive rats — increased sensitivity to nifedipine. Acta Pharmacol Toxicol 43: 137Google Scholar
  25. 25.
    Kinney EL, Moskowitz RM, Zelis R (1981) The pharmacokinetics and pharmacology of oral diltiazem in normal volunteers. J Clin Pharmacol 21: 337Google Scholar
  26. 26.
    Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32: 516Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Aoki
    • 1
  • K. Sato
    • 1
  • S. Kondo
    • 1
  • M. Yamamoto
    • 1
  1. 1.Second Department of Internal MedicineNagoya City University Medical School, Nagoya City UniversityNagoyaJapan

Personalised recommendations