Advertisement

European Journal of Clinical Pharmacology

, Volume 26, Issue 6, pp 663–668 | Cite as

Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology

  • E. J. Ariëns
Special Article

Summary

The significance of stereochemistry in therapeutic action is outlined and elucidated. Often only one isomer is therapeutically active, but this does not mean that the other is really inactive. It may very well contribute to the side-effects. The therapeutically non-active isomer in a racemate should be regarded as an impurity (50% or more). It is emphasized how in clinical pharmacology, and particularly in pharmacokinetics, neglect of stereoselectivity in action leads to the performance of expensive “highly sophisticated scientific nonsense”. This also holds true in the development and marketing of new drugs as exemplified by various “pseudo-hybrid” drugs now reaching the clinic.

Key words

stereoselectivity drug action eudismic ratio isomeric ballast (in)active isomers pharmacokinetic nonsense hybrid drugs pseudo-hybrid drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ariëns EJ, Simonis AM, van Rossum JM (1964) Drug-receptor interaction: interaction of one or more drugs with one receptor system. In: Ariëns EJ (ed) Molecular pharmacology, vol 1. Academic Press, New York London, pp 232–286Google Scholar
  2. 2.
    Ariëns EJ (1983) Stereoselectivity in bioactive agents: general aspects. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell Scientific Publications, Oxford London Edinburgh Boston Melbourne, pp 11–32Google Scholar
  3. 3.
    Lehmann F PA (1978) Stereoselective molecular recognition in biology. In: Cuatrecasas P, Greaves MF (eds) Receptors and recognition; vol 5, series A, Chapman and Hall, London, pp 1–77Google Scholar
  4. 4.
    Lehmann F PA, Rodrigues de Miranda JF, Ariëns EJ (1976) Stereoselectivity and affinity in molecular pharmacology. In: Jucker E (ed) Progress in drug research, vol 20. Birkhäuser, Basel Stuttgart, pp 101–142Google Scholar
  5. 5.
    Portoghese PS (1970) Relationships between stereostructure and pharmacological activities. In: Elliot HW, Cutting WC, Dreisbach RH (eds) Annual review of pharmacology, vol 10. Annual Reviews Inc, Palo Alto, CA, pp 51–76Google Scholar
  6. 6.
    Ariëns EJ, Simonis AM (1967) Cholinergic and anticholinergic drugs, do they act on common receptors? Ann NY Acad Sci 144: 842–868Google Scholar
  7. 7.
    Pfeiffer CC (1956) Optical isomerism and pharmacological action, a generalization. Science 124: 29–31Google Scholar
  8. 8.
    Ariëns EJ (1966) Eine Molekulargrundlage für die Wirkung von Pharmaka. I. Rezeptor-Theorie und Struktur-Wirkungs-Beziehung. Arzneimittelforsch 16: 1376–1393Google Scholar
  9. 9.
    Ooms AJJ, Boter HL (1965) Stereospecificity of hydrolytic enzymes in their reaction with optically active organophosphorus compounds-I. The reaction of cholinesterases and paraoxonase with S-alkyl p-nitrophenyl methylphosphonothiolates. Biochem Pharmacol 14: 1839–1846Google Scholar
  10. 10.
    Keeley FJ, Weiner DL, Okerholm RA (1983) Bioavailability of medroxalol in man. Biopharm Drug Dispos 4: 305–309Google Scholar
  11. 11.
    Wegler R, Eue L (1970) Herbizide. In: Wegler R (ed) Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel. Band 2. Springer, Berlin Heidelberg New York, pp 172–395Google Scholar
  12. 12.
    Luckwill LC, Woodcock D (1956) In: Wain RL, Wightman F (eds) The chemistry and mode of action of plant growth substances. Butterworth London, p 195Google Scholar
  13. 13.
    Ney UM (1983) Enhancement of airway sensitivity to histamine in guinea-pigs by β-adrenoceptor blocking agents. Br J Pharmacol 78 [Proc Suppl]: 153 PGoogle Scholar
  14. 14.
    Elliott HL, Meredith PA, Summer DJ, Reid JL (1984) Comparison of the clinical pharmacokinetics and concentration-effect relationships for medroxalol and labetalol. Br J Clin Pharmacol 17: 573–578Google Scholar
  15. 15.
    White PF, Ham J, Way WL, Trevor AJ (1980) Pharmacology of ketamine isomers in surgical patients. Anesthesiology 52: 231–239Google Scholar
  16. 16.
    Büch HP, Schneider-Affeld F, Rummel W (1973) Stereochemical dependence of pharmacological activity in a series of optically active N-methylated barbiturates. Naunyn-Schmiedeberg's Arch Pharmacol 277: 191–198Google Scholar
  17. 17.
    Downes H, Perry RS, Ostlund RE, Karler R (1970) A study of the excitatory effects of barbiturates. J Pharmacol Exp Ther 175: 692–699Google Scholar
  18. 18.
    Zimmerman DM, Gesellchen PD (1982) Analgesis (peripheral and central), endogenous opioids and their receptors. Ann Rep Med Chem 17: 21–30Google Scholar
  19. 19.
    Ariëns EJ (1963) Steric structure and activity of catecholamines on α- and β-receptors. In: Brunings KJ, Lindgren P (eds) Proceedings of the First International Pharmacological Meeting, vol 7. Pergamon Press, Oxford London New York Paris, pp 247–264Google Scholar
  20. 20.
    Ariëns EJ (1967) The structure-activity relationships of beta adrenergic drugs and beta adrenergic blocking drugs. Ann NY Acad Sci 139: 606–631Google Scholar
  21. 21.
    Lotti VJ, Taylor DA (1982) α2-Adrenergic agonist and antagonist activity of the respective (−)- and (+)-enantiomers of 6-ethyl-9-oxaergoline (EOE). Eur J Pharmacol 85: 211–215Google Scholar
  22. 22.
    Smith MS, Wain RL, Wightman F (1952) Studies on plant growth-regulating substances. V. Steric factors in relation to mode of action of certain aryloxyalkylcarboxylic acids. Ann Appl Biol 39: 295–307Google Scholar
  23. 23.
    Tobert JA, Cirillo VJ, Hitzenberger G, James I, Pryor J, Cook T, Buntinx A, Holmes IB, Lutterbeck PM (1981) Enhancement of uricosuric properties of indacrinone by manipulation of the enantiomer ratio. Clin Pharmacol Ther 29: 344–350Google Scholar
  24. 24.
    Hoffman WF, Woltersdorf OW Jr, Novello FC, Cragoe Jr EJ (1981) (Acylaryloxy) acetic acid diuretics. 3. 2,3-Dihydro-5-acyl-2-benzofurancarboxylic acids, a new class of uricosuric diuretics. J Med Chem 24: 865–873Google Scholar
  25. 25.
    Kaiser DG, van Geissen GJ, Reisher RJ, Wechter WJ (1976) Isomeric inversion of ibuprofen (R)-enantiomer in humans. J Pharm Sci 65: 269–273Google Scholar
  26. 25a.
    Hutt AJ, Caldwell J (1983) The metabolic chiral inversion of 2-arylpropionic acids — a novel route with pharmacological consequences. J Pharm Pharmacol 35: 693–704Google Scholar
  27. 26.
    Ariëns EJ (1971) A general introduction to the field of drug design. In: Ariëns EJ (ed) Drug design, vol 1. Academic Press, New York London, pp 34–35Google Scholar
  28. 27.
    Low LK, Castagnoli N Jr (1978) Enantioselectivity in drug metabolism. In: Clarke FH (ed) Annual reports in medicinal chemistry, vol 13. Academic Press, New York London, pp 304–315Google Scholar
  29. 28.
    Jenner P, Testa B (1973) The influence of stereochemical factors on drug disposition. Drug Metab Rev 2[2]: 117–184Google Scholar
  30. 29.
    Vermeulen NPE, Breimer DD (1983) Stereoselectivity in drug and xenobiotic metabolism. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell, Oxford London Edinburgh Boston Melbourne, pp 33–53Google Scholar
  31. 30.
    Walle T, Wilson MJ, Walle UK, Bai SA (1983) Stereochemical composition of propranolol metabolites in the dog using stable isotope-labeled pseudoracemates. Drug Metab Dispos 11: 544–549Google Scholar
  32. 31.
    Patil PN, Miller DD, Trendelenburg U (1975) Molecular geometry and adrenergic drug activity. Pharmacol Rev 26: 323–392Google Scholar
  33. 32.
    Van Ginneken CAM, Rodrigues de Miranda JF, Beld AJ (1983) Stereoselectivity and drug distribution. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell, Oxford London Edinburgh Boston Melbourne, pp 55–62Google Scholar
  34. 33.
    Koopman PC (1960) Neurotransmitters and their chemical derivatives. PhD Thesis University of Nijmegen, Bronder-Offset, Rotterdam, pp 1–112Google Scholar
  35. 34.
    Ariëns EJ, Waelen MJGA, Sonneville PF, Simonis AM (1963) The pharmacology of catecholamines and their derivatives. I. Arzneimittelforsch 13: 541–546Google Scholar
  36. 35.
    Waelen MJGA (1963) Vaatverwijdende middelen. MD Thesis University of Nijmegen, Thoben Offset, Nijmegen, pp 1–186Google Scholar
  37. 36.
    Ariëns EJ (1967) Wirkung und Wirkungsmechanismus von Katecholaminen und ihren Derivaten. Naunyn-Schmiedeberg's Arch Pharmacol Exp Pathol 257: 118–141Google Scholar
  38. 37.
    Brittain RT, Drew GM, Levy GP (1982) The α-and β-adrenoceptor blocking potencies of labetalol and its individual stereoisomers in anaesthetized dogs and in isolated tissues. Br J Pharmacol 77: 105–114Google Scholar
  39. 37a.
    Spedding M (1981) Partial agonist effects of medroxalol at β2-adrenoceptors. Br J Pharmacol 74: 847P-848PGoogle Scholar
  40. 38.
    Gold EH, Chang W, Cohen M, Baum T, Ehrreich S, Johnson G, Prioli N, Sybertz EJ (1982) Synthesis and comparison of some cardiovascular properties of the stereoisomers of labetalol. J Med Chem 25: 1363–1370Google Scholar
  41. 39.
    Sybertz EJ, Sabin CS, Pula KK, Vander Vliet G, Glennon J, Gold EH, Baum T (1981) Alpha- and beta-adrenoceptor blocking properties of labetalol and its R, R-isomer, SCH 19927. J Pharmacol Exp Ther 218: 435–443Google Scholar
  42. 40.
    Baum T, Watkins RW, Sybertz EJ, Vemulapalli S, Pula KK, Eynon E, Nelson S, Vander Vliet G, Glennon J, Moran RM (1981) Antihypertensive and hemodynamic actions of SCH 19927, the R, R-isomer of labetalol. J Pharmacol Exp Ther 218: 444–452Google Scholar
  43. 41.
    Ariëns EJ (1983) Stereochemie en bioactiviteit. Chem Magazine, October, 545–548Google Scholar
  44. 42.
    Cheng HC, Reavis OK Jr, Grisar JM, Claxton GP, Weiner DL, Woodward JK (1980) Antihypertensive and adrenergic receptor blocking properties of the enantiomers of medroxalol. Life Sci 27: 2529–2534Google Scholar
  45. 43.
    Eden RJ, Owen DAA, Taylor EM (1983) The pharmacology of the two stereoisomers of prizidilol. Br J Pharmacol 78 [Proc Suppl]: 34PGoogle Scholar
  46. 44.
    Snell ES (1982) Pharmacological appraisal of fixed-dose combination medicines: discussion paper. J Roy Soc Med 75: 457–463Google Scholar
  47. 45.
    Shenfield GM (1982) Fixed combination drug therapy. Drugs 23: 462–480Google Scholar
  48. 46.
    Wijnberg H (1980) Synthesis devised for asymmetric compounds. Chem Eng News 58: 24 (September 1980)Google Scholar
  49. 47.
    Mosher HS, Morrison JD (1983) Current status of asymmetric synthesis. Science 221: 1013–1019Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • E. J. Ariëns
    • 1
  1. 1.Institute of PharmacologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations