Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5597–5602 | Cite as

Pressureless sintered ATZ and ZTA ceramic composites

  • R. Chaim
Papers

Abstract

Alumina-20 wt% zirconia (ATZ) and zirconia-20 wt% alumina (ZTA) composites were prepared by conventional sintering of commercial powders, with average particle sizes in the range 0.35–0.70 μm. Sintering at 1650 °C for 4 h resulted in final densities up to 96%. Bending strength and hardness increased with the final density. The tetragonal volume fraction was strongly dependent on both the final density and tetragonal grain size. The relatively high fracture toughness of 9 MPa m1/2 was associated with the highly dense microstructure consisting of tetragonal grains of the critical size.

Keywords

Polymer Alumina Grain Size Microstructure Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tsukuma, K. Ueda and M. Shimada, J. Amer. Ceram. Soc. 68 (1985) C-4.Google Scholar
  2. 2.
    F. F. Lange, ibid. 66 (1983) 396.Google Scholar
  3. 3.
    J. Wang and R. Stevens, J. Mater. Sci. 23 (1988) 804.Google Scholar
  4. 4.
    S. Rajendran, M. V. Swain and H. J. Rossell, ibid. 23 (1988) 1805.Google Scholar
  5. 5.
    J. Wang and R. Stevens, ibid. 24 (1989) 3421.Google Scholar
  6. 6.
    F. F. Lange, T. Yamaguchi, B. I. Davis and P. E. D. Morgan, J. Amer. Ceram. Soc. 71 (1988) 446.Google Scholar
  7. 7.
    F. F. Lange and M. M. Hirlinger, ibid. 67 (1984) 164.Google Scholar
  8. 8.
    S. Hori, R. Kurita, M. Yoshimura and S. Somiya, J. Mater. Sci. Lett. 4 (1985) 1067.Google Scholar
  9. 9.
    J-T. Lin and H-Y. Lu, Ceram. Int. 14 (1988) 251.Google Scholar
  10. 10.
    S. Hori, R. Kurita, M. Yoshimura and S. Somiya, in “Advances in Ceramics”, Vol. 24A, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramic Society, Westerville, Ohio, 1988) p. 423.Google Scholar
  11. 11.
    M. Kagawa, M. Kikuchi, Y. Syono and T. Nagae, J. Amer. Ceram. Soc. 66 (1983) 751.Google Scholar
  12. 12.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.Google Scholar
  13. 13.
    R. C. Garvie and M. V. Swain, ibid. 20 (1985) 1193.Google Scholar
  14. 14.
    D. J. Green, J. Amer. Ceram. Soc. 65 (1982) 610.Google Scholar
  15. 15.
    M. Ruhle, N. Claussen and A. H. Heuer, ibid. 69 (1986) 195.Google Scholar
  16. 16.
    E. Bischoff and M. Ruhle, in “Advances in Ceramics”, Vol. 24B, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramic Society, Westerville, Ohio, 1988) p. 635.Google Scholar
  17. 17.
    F. F. Lange and M. Metcalf, J. Amer. Ceram. Soc. 66 (1983) 398.Google Scholar
  18. 18.
    F. F. Lange, B. I. Davis and I. A. Aksay, ibid. 66 (1983) 407.Google Scholar
  19. 19.
    T. S. Yen and J. K. Guo, in “Advances in Ceramics”, Vol. 24B, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramic Society, Westerville, Ohio, 1988) p. 573.Google Scholar
  20. 20.
    K. Tsukuma, T. Takahata and M. Shiomi, ibid. in “, p. 721.Google Scholar
  21. 21.
    F. Wakai, S. Sakaguchi and Y. Matsuno, Adv. Ceram. Mater. 1 (1986) 259.Google Scholar
  22. 22.
    T. G. Nieh, C. M. McNally and J. Wadsworth, Scripta Metall. 22 (1988) 1297.Google Scholar
  23. 23.
    Idem, ibid. 23 (1989) 457.Google Scholar
  24. 24.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 62 (1979) 298.Google Scholar
  25. 25.
    B. Kibbel and A. H. Heuer, ibid. 69 (1986) 231.Google Scholar
  26. 26.
    F. F. Lange, J. Mater. Sci. 17 (1982) 247.Google Scholar
  27. 27.
    G. De Portu, C. Fiori and O. Sbaizero, in “Advances in Ceramics”, Vol. 24B, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramic Society, Westerville, Ohio, 1988) p. 1063.Google Scholar
  28. 28.
    W. Kladnig and G. Gritzner, J. Mater. Sci. Lett. 6 (1987) 1235.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • R. Chaim
    • 1
  1. 1.Department of Materials EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations