Advertisement

Journal of Materials Science

, Volume 27, Issue 20, pp 5397–5430 | Cite as

Hafnia and hafnia-toughened ceramics

  • J. Wang
  • H. P. Li
  • R. Stevens
Review

Abstract

Hafnia (HfO2) and hafnium-based materials are traditionally regarded as technologically important materials in the nuclear industry, a consequence of their exceptionally high neutron absorption coefficient. Following the discovery of transformation toughening in the mid 1970s, a considerable research effort has been devoted to zirconia (ZrO2)-toughened ceramics (ZTCs). They are considered to be potentially useful materials for structural applications at low and intermediate temperatures (T<1000 °C). Their unsuitability for high-temperature structural applications (T>1000 °C) is related to the low temperature of the tetragonal to monoclinic transformation in ZrO2. On the basis that HfO2 exhibits a similar crystal structure and in particular that its tetragonal to monoclinic transformation temperature (∼1700 °C) is approximately 700 °C higher than that for ZrO2, it has been suggested that high-temperature transformation toughening could be possible in HfO2-toughened ceramics (HTCs). Although the concepts behind this suggestion are universally appreciated, only a limited success has been made of the fabrication and the microstructural and mechanical property evaluation of these materials. The fracture toughness values obtained so far in HfO2 toughened ceramics are, in fact, considerably lower than those obtained in their ZrO2 counterparts. A great deal of further research work is therefore required in order to understand fully and to exploit toughened ceramics in the HfO2-based and HfO2-containing systems. This review covers the science and technology of HfO2 and HfO2-toughened ceramics in terms of processing, phase transformation, microstructure, and mechanical properties.

Keywords

Zirconia Fracture Toughness Transformation Temperature Hafnia HfO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Garvie, R. H. J. Hannink and R. T. Pascoe, Nature (Lond.) 258 (1975) 703.Google Scholar
  2. 2.
    G. K. Bansal and A. H. Heuer, J. Amer. Ceram. Soc. 58 (1975) 235.Google Scholar
  3. 3.
    D. L. Porter and A. H. Heuer, ibid. 60 (1977) 543.Google Scholar
  4. 4.
    N. Claussen, ibid. 59 (1976) 179.Google Scholar
  5. 5.
    Idem, ibid. 59 (1976) 49.Google Scholar
  6. 6.
    A. H. Heuer and L. W. Hobbs (eds), “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia I” (The American Ceramics Society, Columbus, OH 1981).Google Scholar
  7. 7.
    N. Claussen, M. Ruhle and A. H. Heuer (eds), “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II” (The American Ceramics Society, Columbus, OH, 1984).Google Scholar
  8. 8.
    S. Somiya, N. Yamamoto and H. Hanagida (eds), “Advances in Ceramics”, Vol. 24 (A and B) “Science and Technology of Zirconia III” (The American Ceramics Society, Westerville, OH, 1988).Google Scholar
  9. 9.
    K. Tsukuma, K. Ueda and M. Shimada, J. Amer. Ceram. Soc. 68 (1985) C-4.Google Scholar
  10. 10.
    K. Tsukuma and M. Shimada, J. Mater. Sci. Lett. 4 (1985) 857.Google Scholar
  11. 11.
    S. Meriani and C. Palmonari (eds), “Zirconia '88” (Elsevier Applied Science, London, 1989).Google Scholar
  12. 12.
    E. C. Subbarao, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia I”, edited by A. H. Heuer and L. W. Hobbs (The American Ceramics Society, Columbus, OH, 1981) p. 1.Google Scholar
  13. 13.
    T. K. Gupta, F. F. Lange and J. H. Bechtold, J. Mater. Sci. 13 (1978) 1464.Google Scholar
  14. 14.
    G. M. Wolten, Acta Crystall. 17 (1964) 763.Google Scholar
  15. 15.
    C. T. Lynch, in “High Temperature Oxides”, Vol. 5–11, edited by A. M. Alper (Academic Press, New York, London, 1970) p. 193.Google Scholar
  16. 16.
    N. Claussen and M. Ruhle, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia I”, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, 1981) p. 137.Google Scholar
  17. 17.
    N. Claussen, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 325.Google Scholar
  18. 18.
    R. W. Rice, B. A. Bender, R. P. Ingel, T. W. Coyle and J. R. Spann, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 507.Google Scholar
  19. 19.
    J. Wang and R. Stevens, Final Report for BP, The University of Leeds (1990).Google Scholar
  20. 20.
    E. M. Larsen, J. Chem. Educ. 10 (1951) 529.Google Scholar
  21. 21.
    W. Fischer and W. Chalybaeus, Z. Anorg. Chem. 225 (1947) 79.Google Scholar
  22. 22.
    Idem, ibid. 225 (1947) 277.Google Scholar
  23. 23.
    H. A. Abodishish, US Pat. 4 873 072 (10 October 1989).Google Scholar
  24. 24.
    I. Arsenie and I. Leuca, Rev. Roam. Chem. 15 (1970) 1263.Google Scholar
  25. 25.
    N. Claussen, J. Steeb and R. F. Pabst, Amer. Ceram. Soc. Bull. 55 (1977) 559.Google Scholar
  26. 26.
    G. V. Hevesey, Chem. Rev. 2 (1925) 1.Google Scholar
  27. 27.
    T. Moeller, “Inorganic Chemistry” (Wiley, New York, 1952).Google Scholar
  28. 28.
    C. Pauling, “The Nature of the Chemical Bond”, 3rd Edn (Cornell Press, Ithaca, NY, 1960).Google Scholar
  29. 29.
    Powder Diffraction Files 6-318, 7-337, 8-342, 13-307, 14-534, 17-923, 21-904 and 24-1165, 1601 Park Lane, Swarthmore, PA 19081 (1976).Google Scholar
  30. 30.
    R. Ruh, H. J. Garrett, R. F. Domagala and N. M. Tallen, J. Amer. Ceram. Soc. 51 (1968) 23.Google Scholar
  31. 31.
    Y. Sakka, Y. Oishi and K. Ando, J. Mater. Sci. 17 (1982) 3101.Google Scholar
  32. 32.
    R. C. Weast, “CRC Handbook for Chemistry and Physics”, 65th Edn (CRC Press, Boca Raton, FL, 1985) p. 165.Google Scholar
  33. 33.
    R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25 (1969) 925.Google Scholar
  34. 34.
    E. J. Little and M. M. Jones, J. Chem. Educ. 37 (1960) 231.Google Scholar
  35. 35.
    D. R. Martin and P. J. Pizzolato, in “Rare Metals Handbook”, 2nd Edn, edited by C. A. Hampel (Reinhold, New York, 1954) p. 173.Google Scholar
  36. 36.
    B. Mason, “Principles of Geochemistry”, Wiley, NY (1952).Google Scholar
  37. 37.
    P. Gadsden, Mining Annual Report (1985) p. 112.Google Scholar
  38. 38.
    R. Stevens, “An Introduction to Zirconia”, 2nd Edn (Magnesium Electron, Twickenham, UK, 1986).Google Scholar
  39. 39.
    M. Fleischer, Geol. Surv. Bull. 1021A (1955) 13.Google Scholar
  40. 40.
    Techn. Bull. (1985) Toya Soda Manufacturing Co. Ltd, 7-7, 1-Chome, Akasaka, Minato-Ku, Tokyo 107, Japan.Google Scholar
  41. 41.
    Techn. Bull. (1987) Nilcra Ceramics Ltd, 239 Separation Street, Northcote, Victoria, 3070, Australia.Google Scholar
  42. 42.
    L. L. Fehrenbacher and L. A. Jacobson, J. Amer. Ceram. Soc. 48 (1965) 157.Google Scholar
  43. 43.
    M. B. Bever (ed) “Encyclopedia of Materials Science and Engineering” (Pergamon Press, Oxford, 1986) p. 2071.Google Scholar
  44. 44.
    A. C. Richardson, D. W. Scott and J. F. Shea, “Separation of Zirconium and Hafnium”, Oak Ridge National Lab. Report No: AECD-2979 (1955).Google Scholar
  45. 45.
    R. F. Domagala and R. Ruh, Amer. Soc. Matel Trans. Q 58 (1965) 164.Google Scholar
  46. 46.
    Alfa Chemicals Catalog (1990).Google Scholar
  47. 47.
    Aldrich Chemicals Catalog (1990).Google Scholar
  48. 48.
    Techn. Bull. (1987) Teledyne Wah Chang Albany, Albany, OR, USA.Google Scholar
  49. 49.
    P. R. Staszak, NASA Report: Nasa-cr-182800, Vol. 1 (1988).Google Scholar
  50. 50.
    C. A. Skidmore, Mining Annual Report (1991) p. 87.Google Scholar
  51. 51.
    F. Farnworth, S. L. Jones and I. McAlpine, in “Speciality Inorganic Chemicals”, edited by R. Thompson (Royal Society of Chemistry, London, 1980) p. 249.Google Scholar
  52. 52.
    R. C. Garvie, in “High Temperature Oxides Part II”, edited by A. M. Alper (Academic Press, New York, 1970) p. 117.Google Scholar
  53. 53.
    E. S. Gould, “Inorganic Reactions and Structures” (Holt, New York, 1955).Google Scholar
  54. 54.
    D. Coster and G. Hevesy, US Pat. 1 660 440 (1928).Google Scholar
  55. 55.
    V. Yatirajam, J. Sci. Indust. Res. 21D (1962) 196.Google Scholar
  56. 56.
    J. A. Megy and H. Freund, Metall. Trans. 10B (1979) 413.Google Scholar
  57. 57.
    E. M. Larsen, p. 67 in “Inorganic Synthesis”, edited by W. C. Fernelius and L. L. Quill, McGraw-Hill Book Co. Inc., NY (1950).Google Scholar
  58. 58.
    A. E. Van Arkel and J. H. De Boer, Z. Anorg. Allgem. Chem. 141 (1924) 289.Google Scholar
  59. 59.
    W. C. Schumb and F. J. Pittmann, Anal. Chem. 14 (1942) 512.Google Scholar
  60. 60.
    E. H. Huffman and R. C. Lilly, J. Amer. Chem. Soc. 71 (1949) 4147.Google Scholar
  61. 61.
    Teledyne Industries Inc., US Pat. 1 539 958 (17 October 1975).Google Scholar
  62. 62.
    K. S. Mazdiyasni, C. T. Lynch and J. S. Smith, J. Amer. Ceram. Soc. 48 (1965) 372.Google Scholar
  63. 63.
    K. S. Mazdiyasni and L. M. Brown, ibid. 53 (1970) 43.Google Scholar
  64. 64.
    K. S. Mazdiyasni, C. T. Lynch and J. S. Smith, ibid. 50 (1967) 532.Google Scholar
  65. 65.
    L. M. Brown and K. S. Mazdiyasni, ibid. 53 (1970) 590.Google Scholar
  66. 66.
    S. L. Dole, R. W. Scheidecker, L. E. Shiers, M. F. Berard and O. Hunter Jr, Mater. Sci. Engng 32 (1978) 277.Google Scholar
  67. 67.
    O. Hunter Jr, R. W. Scheidecker and S. Tojo, in “Materials Science Monograph 6”, “Energy and Ceramics”, edited by P. Vincenzini (Elsevier, New York, 1981) p. 879.Google Scholar
  68. 68.
    Li-Min Tau, R. Srinivasan, R. J. De Angelis, T. Pinder and B. H. Davis, J. Mater. Res. 3 (1988) 561.Google Scholar
  69. 69.
    R. Srinivasan and B. H. Davis, J. Amer. Ceram. Soc. 73 (1990) 1780.Google Scholar
  70. 70.
    H. Toraya, M. Yoshimura and S. Somiya, ibid. 65 (1981) C-72.Google Scholar
  71. 71.
    Idem, ibid. 66 (1983) 148.Google Scholar
  72. 72.
    Idem, ibid. 66 (1983) 818.Google Scholar
  73. 73.
    Idem, in “Advances in Ceramics”, Vol. 12,“Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 806.Google Scholar
  74. 74.
    S. Somiya, M. Yoshimura, Z. Nakai, K. Hishinuma and T. Kumaki, in “Advances in Ceramics”, Vol. 21, “Ceramic Powder Science”, edited by G. L. Messing, K. S. Mazdiyasni, J. W. McCauley and R. A. Harber (The American Ceramics Society, Westerville, OH, 1987) p. 43.Google Scholar
  75. 75.
    I. W. Chen and Y. H. Chaio, Acta Metall. 33 (1985) 1827.Google Scholar
  76. 76.
    Idem, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 33.Google Scholar
  77. 77.
    J. Adam and M. D. Rogers, Acta Crystallogr. 12 (1959) 951.Google Scholar
  78. 78.
    R. Ruh and V. A. Patel, J. Amer. Ceram. Soc. 56 (1973) 606.Google Scholar
  79. 79.
    R. E. Hann, P. R. Suitch and J. L. Pentecost, ibid. 68 (1985) C-285.Google Scholar
  80. 80.
    C. E. Curtis, L. M. Doney and J. R. Johnson, ibid. 37 (1954) 458.Google Scholar
  81. 81.
    D. W. Stacy, J. K. Johnstone and D. R. Wilder, ibid. 55 (1972) 482.Google Scholar
  82. 82.
    D. Taylor, Br. Ceram. Trans. J. 83 (1984) 32.Google Scholar
  83. 83.
    I. A. El-Shanshoury, V. A. Rudenko and I. A. Ibrahim, J. Amer. Ceram. Soc. 53 (1970) 264.Google Scholar
  84. 84.
    V. B. Glushkova and M. V. Kravchinskaya, Ceram. Intl. 11 (1985) 56.Google Scholar
  85. 85.
    G. B. Senft and V. S. Stubican, Mater. Res. Bull. 18 (1983) 1163.Google Scholar
  86. 86.
    J. D. Buckley, PhD thesis, Iowa State University, Ames, IA (1967).Google Scholar
  87. 87.
    R. P. Ingel, D. Lewis, B. A. Bender and R. W. Rice, Ceram. Eng. Sci. Proc. 3 (1982) 577–86.Google Scholar
  88. 88.
    G. L. Clark and D. H. Reynolds, Ind. Engng Chem. 29 (1937) 711.Google Scholar
  89. 89.
    J. D. McCullough and K. N. Trueblood, Acta Crystallogr. 12 (1959) 507.Google Scholar
  90. 90.
    D. K. Smith and H. W. Newkirk, ibid. 18 (1965) 983.Google Scholar
  91. 91.
    G. Teufer, ibid. 15 (1962) 1187.Google Scholar
  92. 92.
    G. K. Bansal and A. H. Heuer, Acta Metall. 20 (1972) 1280.Google Scholar
  93. 93.
    R. Ruh and W. R. Corfield, J. Amer. Ceram. Soc. 53 (1970) 126–129.Google Scholar
  94. 94.
    V. Lanteri, A. H. Heuer and T. E. Mitchell, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 118.Google Scholar
  95. 95.
    E. K. Keller (ed.), “Hafnium Dioxide and Its Compounds with Oxides of Rare Earth Elements” (Nauka, Leningrad, 1984).Google Scholar
  96. 96.
    A. G. Boganov, V. S. Rudenko and L. P. Makarov, Dokl. Acad. Nauk USSR 160 (1965) 1065.Google Scholar
  97. 97.
    P. Aldebert, J. M. Badie, J. P. Traverse, J. L. .Buevoz and G. Roult, Rev. Int. Hautes Temp. Refract. 12 (1975) 307.Google Scholar
  98. 98.
    D. K. Smith and C. F. Cline, J. Amer. Ceram. Soc. 45 (1962) 249.Google Scholar
  99. 99.
    L. Liu, Phys. Chem. Solids 41 (1980) 331.Google Scholar
  100. 100.
    H. J. Garrett, Amer. Ceram. Soc. Bull. 42 (1963) 201.Google Scholar
  101. 101.
    G. M. Wolten, J. Amer, Ceram, Soc. 46 (1963) 418.Google Scholar
  102. 102.
    A. H. Heuer and M. Ruhle, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 1.Google Scholar
  103. 103.
    J. E. Bailey, Proc. Roy. Soc. (Lond.) 279A (1964) 395.Google Scholar
  104. 104.
    C. F. Grain and W. J. Campbell, US Bur. Mines Rep. Invest. 5982 (1982).Google Scholar
  105. 105.
    R. N. Patil and E. C. Subbarao, J. Appl. Crystallogr. 2 (1969) 281.Google Scholar
  106. 106.
    S. K. Filatov and V. A. Frank-Kamenetskii, Sov. Phys. Crystallogr. 14 (1969) 696.Google Scholar
  107. 107.
    R. C. Garvie, J. Phys. Chem. 69 (1965) 1238.Google Scholar
  108. 108.
    Idem, ibid. 82 (1978) 218.Google Scholar
  109. 109.
    P. Duran and C. Pascual, J. Mater. Sci. 19 (1984) 1178.Google Scholar
  110. 110.
    A. K. Kuznetsov, Zh. Neorg. Khim. 20 (1975) 425.Google Scholar
  111. 111.
    M. V. Kravchinskaya, P. A. Tikhonov and E. K. Koehler, Ceram. Int. 8 (1982) 70.Google Scholar
  112. 112.
    A. V. Shevchenko, L. M. Lopato, V. D. Tkachenko and A. K. Ruban, IZV Akad. Nauk SSSR Neorg. Mater. 23 (1987) 259.Google Scholar
  113. 113.
    V. B. Glushkova, L. V. Sazonova and F. Ganic, ibid. 14 (1978) 2096.Google Scholar
  114. 114.
    T. Noguchi and T. Kozuka, Sol. Energy 10 (1966) 125.Google Scholar
  115. 115.
    P. Clausing, Ceram. Abstr. 11(8) (1932) 471.Google Scholar
  116. 116.
    A. V. Shevchenko, L. M. Lopato, A. I. Stegny, G. I. Gerasimyuk, V. S. Dvernyakov and V. V. Pasichny, Dokl. Akad. Nauk SSSR Ser. A8 (1979) 682.Google Scholar
  117. 117.
    T. Yamada, M. Yoshimura and S. Somiya, High Temp. High Press. 18 (1986) 377.Google Scholar
  118. 118.
    T. Yamada, M. Mizuno and T. Noguchi, YogyoKyokai S57 Nenkai (1982) 121.Google Scholar
  119. 119.
    R. W. Scheiecker, D. R. Wilder and H. Moeller, J. Amer. Ceram. Soc. 60 (1977) 501.Google Scholar
  120. 120.
    A. V. Shevchenko, L. M. Lopato and A. K. Ruban, Dokl. Akad. Nauk SSSR Ser. B 10 (1976) 925.Google Scholar
  121. 121.
    D. W. Stacy, PhD thesis, Iowa University, Ames, IA (1971).Google Scholar
  122. 122.
    O. Hunter Jr, R. W. Scheidecker and S. Tojo, Ceram. Int. 5 (1979) 137.Google Scholar
  123. 123.
    J. E. Bailey, D. Lewis, Z. M. Librant and L. J. Porter, Trans. J. Brit. Ceram. Soc. 71 (1972) 25.Google Scholar
  124. 124.
    J. E. Bailey, P. M. Bills and D. Lewis, ibid. 74 (1975) 247.Google Scholar
  125. 125.
    M. Ruhle and A. H. Heuer, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 14.Google Scholar
  126. 126.
    A. H. Heuer and M. Ruhle, Acta Metall. 33 (1985) 2101.Google Scholar
  127. 127.
    J. Wang, M. W. Rainforth and R. Stevens, Brit. Ceram. Trans. J. 88 (1969) 1.Google Scholar
  128. 128.
    R. C. Garvie and S. K. Chan, Physica 150B (1988) 203.Google Scholar
  129. 129.
    S. K. Chan, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (The American Ceramics Society, Westerville, OH, 1988) p. 983.Google Scholar
  130. 130.
    R. M. McMeeking and A. G. Evans, J. Amer. Ceram. Soc. 65 (1982) 242.Google Scholar
  131. 131.
    A. G. Evans, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 193.Google Scholar
  132. 132.
    A. G. Evans, in “Fracture in Ceramic Materials”, edited by A. G. Evans (Noyes, New Jersey, 1985) p. 25.Google Scholar
  133. 133.
    F. F. Lange, J. Mater. Sci. 17 (1982) 240.Google Scholar
  134. 134.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 60 (1977) 543.Google Scholar
  135. 135.
    R. H. J. Hannink, J. Mater. Sci. 18 (1983) 457.Google Scholar
  136. 136.
    F. F. Lange, ibid. 17 (1982) 225.Google Scholar
  137. 137.
    H. L. Schick, “Thermodynamics of Certain Refractory Compounds”, Vol. 1 (Academic Press, New York, 1966).Google Scholar
  138. 138.
    E. D. Whitney, J. Amer. Ceram. Soc. 45 (1962) 612.Google Scholar
  139. 139.
    T. Y. Tien, T. K. Brog and A. K. Li, Int. J. High Tech. Ceram. 2 (1986) 207.Google Scholar
  140. 140.
    T. K. Brog, PhD thesis, University of Michigan (1986).Google Scholar
  141. 141.
    G. Bocquillon, C. Susse and B. Vodar, Rev. Hautes Temp. Refract. 5 (1968) 249.Google Scholar
  142. 142.
    N. A. Bendeliani, S. V. Popova and L. P. Vereschagin, Geochem. Int. 4 (1967) 557.Google Scholar
  143. 143.
    G. Bocquillon and C. Susse, Rev. Int. Hautes Temp. Refract. 6 (1969) 263.Google Scholar
  144. 144.
    R. F. Domagala and E. Heckenbach, Rev. Sci. Instrum. 35 (1964) 1663.Google Scholar
  145. 145.
    N. A. Bendeliani, S. V. Popova and L. F. Vereschagin, Geokhimiya 6 (1967) 677.Google Scholar
  146. 146.
    R. Suyama, H. Takubo and S. Kume, J. Amer Ceram. Soc. 68 (1985) C-237.Google Scholar
  147. 147.
    I. Nettleship and R. Stevens, Int. J. High Tech. Ceram. 3 (1987) 1.Google Scholar
  148. 148.
    V. B. Glushkova and M. V. Kravchinskaya, Ceram. Int. 11 (1985) 80.Google Scholar
  149. 149.
    V. S. Stubican, G. S. Corman, J. R. Hellman and G. Senft, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 96.Google Scholar
  150. 150.
    E. Rudy and P. Stecher, J. Less-Common Metals 5 (1963) 78.Google Scholar
  151. 151.
    R. F. Domagala and R. Ruh, ASM Trans. Q. 62 (1969) 915.Google Scholar
  152. 152.
    R. Ruh and H. J. Garrett, J. Amer. Ceram. Soc. 50 (1967) 257.Google Scholar
  153. 153.
    C. Delamarre and M. Perez y Jorba, Rev. Hautes Temp. Refract. 2 (1965) 313.Google Scholar
  154. 154.
    J. G. Allpress, H. J. Rossell and H. G. Scott, Mater. Res. Bull. 9 (1975) 455.Google Scholar
  155. 155.
    Idem, J. Solid State Chem. 14 (1975) 264.Google Scholar
  156. 156.
    J. G. Allpress and H. J. Rossell, ibid. 15 (1976) 68.Google Scholar
  157. 157.
    C. Delamarre, Rev. Int. Hautes Temp. Refract. 9 (1972) 209.Google Scholar
  158. 158.
    A. K. Kuznetsov, P. A. Tikhonov and M. V. Kravchinskaya, Zh. Neorg. Khim. 20 (1975) 758.Google Scholar
  159. 159.
    L. M. Lopato, A. V. Shevchenko and E. I. Zoz, Izv. Akad. Khim. 24 (1979) 2923.Google Scholar
  160. 160.
    F. Grain, J. Am. Ceram. Soc. 50 (1967) 288.Google Scholar
  161. 161.
    A. M. Gavrish and E. I. Zoz, Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 14 (1978) 181.Google Scholar
  162. 162.
    V. S. Stubican, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (The American Ceramics Society, Westerville, OH, 1988) p. 71.Google Scholar
  163. 163.
    M. G. Scott, J. Mater. Sci. 10 (1975) 1527–35.Google Scholar
  164. 164.
    R. M. Caillet, C. H. Deportes, G. Robert and G. Vitter, Rev. Int. Haut. Temp. Refract. 4 (1967) 269.Google Scholar
  165. 165.
    M. Duclot, I Vicat and C. H. Deportes, J. Solid State Chem. 2 (1970) 236.Google Scholar
  166. 166.
    M. Perez y Jorba, Ann. Chim. 7 (1962) 479.Google Scholar
  167. 167.
    A. Rouanet, Compt. Rend. Acad. Sci. Paris 267c (1968) 1891.Google Scholar
  168. 168.
    G. S. Corman and V. S. Stubican, Amer. Ceram. Soc. 61 (1982) 337.Google Scholar
  169. 169.
    P. Duran, in “Science of Ceramics”, Vol. 10, edited by H. Hausner (Deutsche Keramiche Gesellschaft, Koln, 1980) p. 209.Google Scholar
  170. 170.
    P. Duran, Ceram. Int. 1 (1975) 10.Google Scholar
  171. 171.
    F. M. Spiridonov and L. N. Komissarova, Zh. Neorg. Khim. 15 (1970) 875.Google Scholar
  172. 172.
    P. Duran, J. Amer. Ceram. Soc. 60 (1977) 510.Google Scholar
  173. 173.
    M. R. Thornber, D. J. M. Bevan and E. Summerville, J. Solid State Chem. 2 (1970) 545.Google Scholar
  174. 174.
    P. Duran, C. Pascual, J. P. Coutures and S. R. Skaggs, J. Amer. Ceram. Soc. 66 (1983) 101.Google Scholar
  175. 175.
    E. Tani, M. Yoshimura and S. Somiya, ibid. 66 (1983) 506.Google Scholar
  176. 176.
    A. M. Gavrish, E. I. Zoz, N. V. Gui'ko and A. E. Solov'eva, Izv.Akad. Nauk USSR Ser. Neorgan Mater. 11 (1975) 668.Google Scholar
  177. 177.
    F. M. Spiridonov, Le. Tkhyong Chyong and L. N. Komissarova, Zh. Neorg. Khim. 22 (1977) 588.Google Scholar
  178. 178.
    K. Tsukuma and M. Shimada, J. Mater. Sci. 20 (1985) 1178.Google Scholar
  179. 179.
    H. F. Simpson, Mater. Des. Eng. 52 (1960) 16.Google Scholar
  180. 180.
    N. A. Godina, E. K. Keler and V. S. Rudenko, J. Inorg. Chem. 5 (1960) 1349.Google Scholar
  181. 181.
    A. Harari, J. P. Bocquet, M. Huber and R. Collongues, C. R. Hebd. Seances Acad. Sci. Ser. C. 267 (1968) 1316.Google Scholar
  182. 182.
    R. W. Lynch and B. Morosin, J. Amer. Ceram. Soc. 55 (1972) 409.Google Scholar
  183. 183.
    K. S. Mazdiyasni and L. M. Brown, ibid. 53 (1970) 585.Google Scholar
  184. 184.
    R. G. Hollenberg, C. M. Marschall, A. R. Rosenfield, G. M. Hollenberg and R. Ruh, Mater. Sci. Engng 15 (1974) 51.Google Scholar
  185. 185.
    G. A. Carlson, J. L. Anderson, R. A. Briesmeister, S. R. Skaggs and R. Ruh, J. Amer. Ceram. Soc. 60 (1977) 508.Google Scholar
  186. 186.
    R. Ruh, G. M. Hollenberg, E. G. Charles and V. A. Patel, ibid. 59 (1976) 495.Google Scholar
  187. 187.
    J. P. Coutures and J. Coutures, ibid. 70 (1987) 383.Google Scholar
  188. 188.
    L. F. Canadien, High Temp. High Press. 13 (1981) 97.Google Scholar
  189. 189.
    O. M. Stansfield, J. Amer. Ceram. Soc. 48 (1965) 436.Google Scholar
  190. 190.
    W. M. Kriven and E. Bischoff, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (The American Ceramics Society, Columbus, OH, 1984) p. 425.Google Scholar
  191. 191.
    B. Ohnysty and F. K. Rose, J. Amer. Ceram. Soc. 47 (1964) 398.Google Scholar
  192. 192.
    M. F. Trubelja and V. S. Stubican, ibid. 71 (1988) 662.Google Scholar
  193. 193.
    N. Claussen, F. Sigulinski and M. Ruhle, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia I”, edited by A. H. Heuer and L. A. Hobbs (The American Ceramics Society, Columbus, OH, 1981) p. 164.Google Scholar
  194. 194.
    B. V. Bondarenko and B. M. Tsarev, Radio. Elektron. 4 (1959) 1059.Google Scholar
  195. 195.
    D. E. Thomas and E. T. Hayes, “The Metallurgy of Titanium” (US Atomic Energy Commission, Washington, 1960).Google Scholar
  196. 196.
    R. J. Ackerman and R. J. Thorn, in “Progress in Ceramics”, edited by J. E. Burke (Pergamon Press, New York, 1961) p. 39.Google Scholar
  197. 197.
    R. W. Scheidecker, J. Mater. Sci. 14 (1979) 2284.Google Scholar
  198. 198.
    S. L. Dole, O. Hunter Jr and F. W. Calderwood, J. Amer. Ceram. Soc. 63 (1980) 136.Google Scholar
  199. 199.
    S. L. Dole, O. Hunter Jr and C. J. Wooge, ibid. 60 (1977) 488.Google Scholar
  200. 200.
    S. L. Dole, MS Thesis Iowa State University, Ames, IA (1977).Google Scholar
  201. 201.
    R. Ruh, G. W. Hollenberg, S. R. Skaggs, S. D. Stoddard, F. D. Gac and E. G. Charles, Amer. Ceram. Soc. Bull. 60 (1981) 504.Google Scholar
  202. 202.
    S. R. Skaggs, Rev. Int. Hautes Temp. Refract. 16 (1979) 157.Google Scholar
  203. 203.
    S. L. Dole and O. Hunter Jr, J. Nucl. Mater. 59 (1976) 207.Google Scholar
  204. 204.
    J. A. Kuszyk and R. C. Bradt, J. Amer. Ceram. Soc. 56 (1973) 420.Google Scholar
  205. 205.
    C. F. Smith and W. B. Crandall, ibid. 47 (1964) 624.Google Scholar
  206. 206.
    R. M. Spriggs, ibid. 44 (1961) 628.Google Scholar
  207. 207.
    S. L. Dole and O. Hunter Jr, ibid. 66 (1983) C-47.Google Scholar
  208. 208.
    R. W. Rice, in “Properties and Microstructure”, edited by R. K. MacCrone (Academic Press, New York, 1977) pp. 199–381.Google Scholar
  209. 209.
    C. D. Wirkus and M. F. Berard, J. Mater. Sci. 17 (1982) 109.Google Scholar
  210. 210.
    R. R. Suchomel and O. Hunter Jr, J. Amer. Ceram. Soc. 59 (1976) 149.Google Scholar
  211. 211.
    Y. Ikuma and A. V. Virkar, J. Mater. Sci. 19 (1984) 2233.Google Scholar
  212. 212.
    R. A. Lange and B. Ohnysty, see C. T. Lynch in [15]in.Google Scholar
  213. 213.
    N. Claussen, Ber. Dtsch. Keram. Ges. 54 (1977) 420.Google Scholar
  214. 214.
    J. Wang and R. Stevens, Ceram. Acta. 3 (1991) 41.Google Scholar
  215. 215.
    F. F. Lange and K. C. Radford, J. Amer. Ceram. Soc. 53 (1970) 420.Google Scholar
  216. 216.
    T. K. Brog, J. S. Wallace and T. Y. Tien, in “Fracture Mechanics of Ceramics”, Vol. 8, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 143.Google Scholar
  217. 217.
    H. W. Carpenter, US Pat. 4 596 781 (1986).Google Scholar
  218. 218.
    E. K. Storms, “The Refractory Carbides” (Academic Press, New York, 1967).Google Scholar
  219. 219.
    L. J. Gauckler, J. Lorenz, J. Weiss and G. Petzow, in “Science of Ceramics”, Vol. 10, edited by H. Hausner (Deut. Keram. Ges., 1980) p. 576.Google Scholar
  220. 220.
    E. D. Whitney, J. Electrochem. Soc. 112 (1965) 91.Google Scholar
  221. 221.
    J. K. Johnstone, PhD thesis, Iowa University, Ames, IA (1970).Google Scholar
  222. 222.
    S. L. Dole, O. Hunter Jr, F. W. Calderwood and D. J. Bray, J. Amer. Ceram. Soc. 61 (1978) 486.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. Wang
    • 1
  • H. P. Li
    • 2
  • R. Stevens
    • 2
  1. 1.IRC in Materials for High Performance ApplicationsThe University of BirminghamBirmingham
  2. 2.School of MaterialsThe University of LeedsLeeds

Personalised recommendations