Journal of Materials Science

, Volume 18, Issue 12, pp 3686–3694 | Cite as

Microstructural studies of the hydration products of three tricalcium silicate polymorphs

  • H. R. Stewart
  • J. E. Bailey


Tricalcium silicate (C3S), the major phase of Ordinary Portland Cement (OPC), occurs in several polymorphic forms depending on the amounts and types of impurity ions present. The hydration products of triclinic, trigonal and monoclinic C3S samples have been studied for a comparison with the silicate hydration products of OPC, using TEM and SEM. In the early stages, less than one day, there are distinct differences observed between the products on the surfaces of grains of different crystal structure but later all three appear similar. This suggests a common mechanism of hydration at later times, irrespective of structure, but the influence of the foreign ions in the first few hours is significant.


Polymer Hydration Crystal Structure Silicate Portland Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Skalny, I. Jawed and H. F. W. Taylor, World Cem. Technol. 9 (1978) 183.Google Scholar
  2. 2.
    J. Skalny and J. F. Young, 7th International Congress on the Chemistry of Cements, Vol. I, Paris, 1980, p. II-l.Google Scholar
  3. 3.
    H. M. Jennings, B. J. Dalgleish and P. L. Pratt, J. Amer. Ceram. Soc. 64 (1981) 567.Google Scholar
  4. 4.
    S. Diamond, in Proceedings of the Conference on Hydraulic Cement Pastes: Their Structure and Properties, Sheffield, 1976 (Cement and Concrete Association, Slough, England, 1976) p. 2–30.Google Scholar
  5. 5.
    J. W. Jeffery, Acta Crystallogr. 5 (1952) 26.Google Scholar
  6. 6.
    N. I. Golovastikov, R. G. Matveeva and N. B. Belov, Kristallografiya 20 (1975) 721.Google Scholar
  7. 7.
    M. Regourd, Bull. Soc. Franc. Mineral Crist. 87 (1964) 241.Google Scholar
  8. 8.
    I. Maki and S. Chromy, Cem. Concr. Res. 8 (1978) 407.Google Scholar
  9. 9.
    P. Gourdin, E. Demoulian, F. Hawthorn and C. Vernet, 7th International Congress on the Chemistry of Cements, Vol. II, Paris, 1980, p. 1223–228.Google Scholar
  10. 10.
    J. E. Bailey and D. Chescoe, Proc. Brit. Ceram. Soc. 28 (1978) 165.Google Scholar
  11. 11.
    W. Lerch and R. H. Bogue, J. Res. Nat. Bur. Stand. 12 (1934) 645.Google Scholar
  12. 12.
    T. Harada, M. Ohta and S. Takagi, J. Ceram. Soc. Jpn. 86 (1979) 195.Google Scholar
  13. 13.
    G. Yamaguchi, K. Shirasuka and T. Ota, Highways Research Board Symposium Structure of PC Paste and Concrete SR90, 1966, p. 263.Google Scholar
  14. 14.
    G. L. Valenti, V. Sabatelli and B. Marchese, Cem. Concr. Res. 8 (1978) 61.Google Scholar
  15. 15.
    R. A. Thompson, D. C. Killoh and J. A. Forrester, J. Amer. Ceram. Soc. 58 (1975) 54.Google Scholar
  16. 16.
    R. Aldous, Cem. Concr. Res. 13 (1983) 89.Google Scholar
  17. 17.
    Idem, ibid, in press.Google Scholar
  18. 18.
    S. Brunauer, Amer. Sci. 50 (1962) 210.Google Scholar
  19. 19.
    D. D. Double, A. Hellawell and S. J. Perry, Proc. Roy. Soc. London A359 (1978) 435.Google Scholar
  20. 20.
    I. Odler and J. Schüppstuhl, Cem. Concr. Res. 11 (1981) 765.Google Scholar
  21. 21.
    P. Fierens, Cemento 75 (1978) 195.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • H. R. Stewart
    • 1
  • J. E. Bailey
    • 1
  1. 1.Department of Metallurgy and Materials TechnologyUniversity of SurreyGuildfordUK

Personalised recommendations