Journal of Materials Science

, Volume 18, Issue 12, pp 3679–3685 | Cite as

Formation of cadmium stannates studied by electron spectroscopy

  • F. Golestani-Fard
  • T. Hashemi
  • K. J. D. Mackenzie
  • C. A. Hogarth


The formation of CdSnO3 and Cd2SnO4 from cadmium and tin oxides in closed vessels was studied over a range of temperature by thermal analysis, X-ray powder diffraction and electron spectroscopy. The results, presented in diagrammatic form, enable suitable reaction conditions to be chosen for the formation of either stannate in the monophase form. ESCA and SIMS examination of the reactants and products indicates that the commercial CdO starting material contains small amounts of carbonate and suboxide impurities, which however have no effect on the formation of the final product. Electron spectroscopy also indicates that the cadmium stannates, once formed, are significantly more resistant to atmospheric carbonation or hydration than is the parent CdO.


Oxide Polymer Spectroscopy Hydration Cadmium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Smith, Acta Crystall. 13 (1960) 749.Google Scholar
  2. 2.
    K. J. D. Mackenzie, W. A. Gerrard and F. Golestani-Fard, J. Mater. Sci. 14 (1979) 2509.Google Scholar
  3. 3.
    A. J. Nozik, Phys. Rev. B6 (1972) 453.Google Scholar
  4. 4.
    R. D. Shannon, J. L. Gillson and R. J. Bouchard, J. Phys. Chem. Solids 38 (1977) 877.Google Scholar
  5. 5.
    G. Haacke, J. Appl. Phys. 47 (1976) 4086.Google Scholar
  6. 6.
    Idem, Appl. Phys. Lett. 28 (1976) 622.Google Scholar
  7. 7.
    Idem, ibid. 30 (1977) 380.Google Scholar
  8. 8.
    G. Haacke and W. E. Mealmaker, J. Electrochem. Soc. 124 (1977) 1923.Google Scholar
  9. 9.
    N. Miyata, Thin Solid Films 58 (1979) 385.Google Scholar
  10. 10.
    C. Haacke, W. E. Mealmaker and L. A. Siegel, Thin Solid Films 55 (1978) 67.Google Scholar
  11. 11.
    N. Miyata, K. Miyake and Y. Yamaguchi, Appl. Phys. Lett. 37 (1980) 180.Google Scholar
  12. 12.
    S. Maniv, C. Miner and W. D. Westwood. J. Vac. Sci. Technol. 18 (1981) 195.Google Scholar
  13. 13.
    H. Yoneyama, T. Ohkubo and H. Tamura, Bull. Chem. Soc. Jpn. 54 (1981) 401.Google Scholar
  14. 14.
    G. Haacke, Ann. Rev. Mater. Sci. 7 (1977) 73.Google Scholar
  15. 15.
    D. E. Hall, J. Electrochem. Soc. 127 (1980) 308.Google Scholar
  16. 16.
    T. A. Carlson, “Photoelectron and Auger Spectroscopy” (Plenum, New York, 1975).Google Scholar
  17. 17.
    D. M. Hercules, Anal. Chem. 48 (1976) 294R.Google Scholar
  18. 18.
    D. Briggs (ed), “Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy” (Heyden, London, 1978).Google Scholar
  19. 19.
    J. Sharma, R. H. Staley, J. D. Rimstidt and T. F. Gora, Chem. Phys. Lett. 9 (1971) 564.Google Scholar
  20. 20.
    C. J. Vesely and D. W. Langer, Phys. Rev. B4 (1971) 451.Google Scholar
  21. 21.
    C. K. Jorgensen, Chimia 24 (1971) 213.Google Scholar
  22. 22.
    J. S. Hammond, S. W. Gaarenstroom and N. Winograd, Anal. Chem. 47 (1975) 2193.Google Scholar
  23. 23.
    S. W. Gaarenstroom and N. Winograd, J. Chem. Phys. 67 (1977) 3500.Google Scholar
  24. 24.
    C. D. Wanger, Faraday Discuss. Chem. Soc. 60 (1975) 291.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • F. Golestani-Fard
    • 1
  • T. Hashemi
    • 1
  • K. J. D. Mackenzie
    • 2
  • C. A. Hogarth
    • 3
  1. 1.Materials and Energy Research CentreTehranIran
  2. 2.Chemistry DivisionDSIRPetoneNew Zealand
  3. 3.Physics DepartmentBrunel UniversityUxbridgeUK

Personalised recommendations