Advertisement

Journal of Materials Science

, Volume 27, Issue 10, pp 2695–2704 | Cite as

Behaviour of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading

  • A. W. Pryce
  • P. A. Smith
Papers

Abstract

Experimental results are presented for the quasi-static tensile behaviour of unidirectional, (0/90)s, (02/904)s and (0/90)3s silicon carbide fibre (Nicalon) reinforced calcium aluminosilicate glass-ceramic matrix laminates. The stress-strain behaviour and associated damage development is described in detail for each laminate. The damage development is quantified by counts of crack density (in both the longitudinal and transverse plies) and stiffness reduction as functions of applied strain. The damage initiation and growth (and its effect on residual properties) are discussed with reference to the Aveston-Cooper-Kelly (ACK) theory for unidirectional ply cracking and crossply laminate shear-lag (originally developed for polymer matrix composites) to describe the transverse ply cracking behaviour.

Keywords

Matrix Composite Aluminosilicate Damage Development Crack Density Ceramic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Aveston, G. A. Cooper and A. Kelly, in Proceedings of The National Physical Laboratory (IPC Science and Technology Press Ltd, 1971), Paper 2, pp. 15–25.Google Scholar
  2. 2.
    D. B. Marshall, B. N. Cox and A. G. Evans, Acta Metall. 33 (1985) 2013.Google Scholar
  3. 3.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.Google Scholar
  4. 4.
    L. N. McCartney, Proc. R. Soc. A409 (1987) 329.Google Scholar
  5. 5.
    A. G. Evans and D. B. Marshall, Acta Metall. 37 (1989) 2567.Google Scholar
  6. 6.
    K. M. Prewo, J. Mater. Sci. 21 (1986) 3590.Google Scholar
  7. 7.
    O. Sbaizero and A. G. Evans, J. Amer. Ceram. Soc. 69 (1986) 481.Google Scholar
  8. 8.
    B. Ford, R. G. Cooke and S. Newsam, Proc. Br. Ceram. Soc. 39 (1987) 229.Google Scholar
  9. 9.
    A. Seerat-Un-Nabi and B. Derby, in Proceedings of 9th Riso International Symposium on Metallurgy and Materials Science, 1988, edited by S. I. Andersen, H. Lillholt and O. B. Pedersen (Risø National Laboratory, Roskilde, Denmark) p. 463.Google Scholar
  10. 10.
    K. M. Prewo, B. Johnson and S. Starrett, J. Mater. Sci. 24 (1989) 1373.Google Scholar
  11. 11.
    T. Mah, M. G. Mendiratta, A. P. Katz, R. Ruh and K. S. Mazdiyasni, J. Amer. Ceram. Soc. 68 (1985) 248.Google Scholar
  12. 12.
    P. A. Smith and J. R. Wood, Compos. Sci. Tech. 38 (1990) 85.Google Scholar
  13. 13.
    R. M. Jones, “Mechanics of Composite Materials”, (Scripta-McGraw-Hill, Washington, DC, 1975).Google Scholar
  14. 14.
    A. C. Kimber and J. G. Keer, J. Mater. Sci. Lett. 1 (1982) 353.Google Scholar
  15. 15.
    H. C. Cao, E. Bischoff, O. Sbaizero, M. Ruhle and A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 1691.Google Scholar
  16. 16.
    A. Parvizi, K. W. Garrett and J. E. Bailey, J. Mater. Sci. 13 (1978) 195.Google Scholar
  17. 17.
    S. L. Ogin and P. A. Smith, Scripta Metall. 19 (1985) 779.Google Scholar
  18. 18.
    N. Laws and G. J. Dvorak, J. Compos. Mater. 22 (1988) 900.Google Scholar
  19. 19.
    P. W. Manders, T-W. Chou, F. R. Jones and J. R. Rock, J. Mater. Sci. 18 (1983) 2876.Google Scholar
  20. 20.
    H. Fukunaga, T-W. Chou, P. W. M. Peters and K. Schulte, J. Compos. Mater. 18 (1984) 339.Google Scholar
  21. 21.
    P. W. M. Peters, ibid. 18 (1984) 545.Google Scholar
  22. 22.
    J. F. Knott, “Fundamentals of Fracture Mechanics” (Butterworths, London, 1973).Google Scholar
  23. 23.
    K. W. Garrett and J. E. Bailey, J. Mater. Sci. 12 (1977) 157.Google Scholar
  24. 24.
    S. L. Ogin, P. A. Smith and P. W. R. Beaumont, Compos. Sci. Tech. 22 (1985) 23.Google Scholar
  25. 25.
    J. E. Masters and K. L. Reifsnider, in “Damage in Composite Materials”, ASTM STP 775 (1982) p. 40.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • A. W. Pryce
    • 1
  • P. A. Smith
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations