Journal of Materials Science

, Volume 17, Issue 7, pp 2141–2153 | Cite as

Long — term growth of superalloy γ′ particles

  • P. K. Footner
  • B. P. Richards


The microstructures of five commercially available nickel-based superalloys (NIM80A, NIM90, NIM105, IN738, IN939) have been studied after heat-treatments at 4 different temperatures and for times up to 15 000 h (170 samples). In all cases for moderate times and temperatures the mean γ′ dimension increased linearly with the cube root of time with an activation energy of 250 to 272 kJ mol−1 K−1. However, at high values of time and temperature some deviations from this behaviour were observed on two of the superalloys. These were accompanied by marked morphological changes thought to be due to re-solution effects. Extended analysis of the particle-size distributions suggests a correlation with the distribution functions predicted by the Lifschitz-Slyosov theory modified to take account of encounters between growing particles. The microstructural data so obtained have been used in failure diagnosis. Attempts have been made to explain the changes in γ′ shape with respect to long-term composition.


Polymer Microstructure Activation Energy Distribution Function Morphological Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Liftshitz and V. V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35.Google Scholar
  2. 2.
    C. Wagner, Z. Electrochem. 65 (1961) 581.Google Scholar
  3. 3.
    W. Hoffelner, E. Kny, W. McCall and R. Stickler, Z. Werkstofftech. 10 (1979) 84.Google Scholar
  4. 4.
    S. B. Fisher and R. J. White, Mater. Sci. Eng. 33 (1978) 149.Google Scholar
  5. 5.
    A. J. Ardell and R. B. Nicholson, J. Phys. Chem. Solids 27 (1966) 1793.Google Scholar
  6. 6.
    Idem, Acta Met. 14 (1966) 1295.Google Scholar
  7. 7.
    P. E. Flewitt and R. A. Stevens, Mater. Sci. Eng. 37 (1979) 237.Google Scholar
  8. 8.
    S. B. Fisher, K. Miller, G. Swallow and R. J. White, J. Nuclear Mater. 55 (1975) 273.Google Scholar
  9. 9.
    A. J. Ardell and D. Chellman, ibid. 22 (1974) 577.Google Scholar
  10. 10.
    P. K. Footner and B. P. Richards, Pract. Metallogr. 17 (1980) 489.Google Scholar
  11. 11.
    R. T. Dehoff, Trans. Met. Soc. AIME 224 (1962) 474.Google Scholar
  12. 12.
    A. J. Ardell, Acta Met. 20 (1972) 61.Google Scholar
  13. 13.
    C. K. L. Davies, P. Nash and R. N. Stevens, ibid. 28 (1980) 179.Google Scholar
  14. 14.
    HENRY WIGGEN & CO, Structures of Nimonic Alloys, Publication No 3563A, January 1973.Google Scholar
  15. 15.
    R. A. Swalin and A. Martin, Trans. AIME 206 (1956) 567.Google Scholar
  16. 16.
    E. H. Van Der Molen, J. M. Oblak and O. H. Kriege, Met. Trans. 2 (1971) 1627.Google Scholar
  17. 17.
    C. T. Sims and W. H. Hagel, “The Superalloys” (John Wiley & Sons, Chichester, 1972) p. 50.Google Scholar
  18. 18.
    C. A. Wallace and R. C. C. Ward, J. Appl. Crystallogr. 8 (1975) 255.Google Scholar
  19. 19.
    J. A. Eades, Proceedings of EMAG 1977, edited by D. L. Misell, September 1977 Institute of Physics Conference Series No 36 (Institute of Physics, Bristol, 1977) p. 283.Google Scholar
  20. 20.
    J. Betzold, Pract. Metallogr. 14 (1977) 310.Google Scholar
  21. 21.
    P. A. Beaven, M. K. Miller and G. W. D. Smith, Proceedings of EMAG 1977, edited by D. L. Misell, September 1977 Institute of Physics Conference Series No 36 (Institute of Physics, Bristol, 1977) p. 199.Google Scholar
  22. 22.
    P. A. Beaven, M. K. Miller, R. J. Lewis and G. D. W. Smith, Proceedings of the 23rd International Field Emission Symposium, Pennsylvania State University, 1976.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • P. K. Footner
    • 1
  • B. P. Richards
    • 1
  1. 1.GEC Hirst Research CentreWembleyUK

Personalised recommendations