Oecologia

, Volume 45, Issue 3, pp 341–345

General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘bana’ vegetation of amazonas

  • M. A. Sobrado
  • E. Medina
Article

Summary

Species of the ‘bana’ vegetation in the Amazonas region of equatorial South America have scleromorphic leaves. This leaf type, which characterizes the vegetation of Mediterranean climates, among others, has apparently evolved in this community in response to the oligotrophic soils and widely fluctuating water table.

Anatomically, the leaves have several features commonly found in xeromorphic plants, including greater leaf and cuticle thickness, pubescent leaves and sunken stomata, and a high incidence of sclerenchyma.

Concentrations of K and P decrease with leaf age, while N remains nearly constant and Ca increases. Concentrations of N and P are lower than in other sclerophyllous species, but the amount of these nutrients recovered before leaf shedding are similar. The correlation between P and N as expressed per unit dry weight is high (r=0.87; p<0.01) as is the relation between leaf specific area (area/dry wt.) and N (r-0.83; p<0.01) and P (r= 0.82; p<0.01).

Soils of this region are very acidic (extreme lowest value pH 3.6) and have high levels of exchangeable Al and Mn. Among the ‘bana’ plant species are some which accumulate high levels of Mn (>300 ppm) and Al (>1000 ppm).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, N.C.W.: Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47, 992–1007 (1966)Google Scholar
  2. Cuenca, G.: Balance nutricional de algunas especies leñosas de dos ecosistemas contrastantes: bosque nublado y bosques deciduo. Tesis de Licenciatura. Universidad Central de Venezuela. Facultad de Ciencias. 1976Google Scholar
  3. Chenery, E.M., Sporne, K.R.: A note on the evolutionary status of Aluminium accumulators among dicotyledons. New Phytol. 76, 551–555 (1976)Google Scholar
  4. Gales, M.E., Booth, J.: Simultaneous and automated determination of phosphorus and total Kjeldahl nitrogen. Environmental monitoring series. 1974Google Scholar
  5. Gauch, H.G.: Inorganic plant nutrition. Dowden, Kutchinson and Roos, Inc. Pennsylvania. 1972Google Scholar
  6. Grieve, B.J., Hellmuth, E.O.: Eco-physiology of Western Australian plants. Oecol. Plant. 5, 33–68 (1970)Google Scholar
  7. Herrera, R.: Soil and terrain conditions in the International Amazon Project at San Carlos de Rio Negro, Venezuela; correlation with vegetation types. In: Transact. Internat. MAB-IUFRO Workshop. (Bruning, E. ed.) Spec. Report 1, 182–188 (1977)Google Scholar
  8. Herrera, R., Mérida, T., Stark, N., Jordan, C.F.: Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65, 208–209 (1978)Google Scholar
  9. Jackson, M.L.: Análisis químico de suelos. Ediciones Omega. Barcelona. 1964Google Scholar
  10. Klinge, H., Medina, E., Herrera, R.: Studies on the ecology of Amazonas caatinga forest in southern Venezuela. Acta Cient Venez. 28, 270–276 (1977)Google Scholar
  11. Klinge, H., Medina, E.: Rio Negro caatingas and campinas: (R.L. Specht Ed.) Heathlands and related shrublands. Elsevier. Amsterdam (in press)Google Scholar
  12. Krause, D., Kummerow, I.: Xeromorphic structure and soil moisture in the chaparral. Oecol. Plant. 12, 133–148 (1977)Google Scholar
  13. Kummerow, J.: Comparative anatomy of sclerophylls of Mediterranean climatic areas. In: (Di Castri, F. and Mooney, H.A. eds), Mediterranean type ecosystems: origin and structure. Springer Verlag. Berlin-Heidelberg-New York 1973Google Scholar
  14. Lange, O.L., Lange, R.: Untersuchungen über Blattemperaturen, Transpiration und Hitzeresistenz an Pflanzen mediterraner Standorte (Costa Brava, Spanien). Flora 153, 387–425 (1963)Google Scholar
  15. Loveless, A.R.: A nutritional interpretation of sclerophyllous and mesophytic leaves. Ann. Bot., 25, 164–168 (1961)Google Scholar
  16. Loveless, A.R.: Further evidences to support a nutritional interpretation of sclerophylls. Ann. Bot. 26, 549–561 (1962)Google Scholar
  17. Marín, D.: Comparación del balance nutricional de especies leñosas decíduas y siempreverdes en un bosques muy seco tropical. Tesis de Licenciatura. Universidad Central de Venezuela. Facultad de Ciencias. 1976Google Scholar
  18. Montes, R., Medina, E.: Seasonal changes in nutrient content of leaves of savanna trees with different ecological behavior. Geo-Eco-Trop. 4, 295–307 (1978)Google Scholar
  19. Mooney, H.A., Dunn, L.: Photosynthetic systems of mediterranean-climate shrubs and trees of California and Chile. Amer. Naturalist 104, 447–453 (1970)Google Scholar
  20. Seddon, G.: Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol. J. Linn. Soc. 6, 65–87 (1974)Google Scholar
  21. Small, E.: Ecological significance of four critical elements in plants of raised sphagnum peat bogs. Ecology 53, 498–502 (1972)Google Scholar
  22. Stark, N., Jordan, C.F.: Nutrient retention by the root mat of an Amazonian raín forest. Ecology 59, 434–437 (1978)Google Scholar
  23. Walter, H.: Die Vegetation der Erde. Jena: Fischer. 1968Google Scholar
  24. Weeb, L.B.: Aluminium accumulation in the Australian-New Guinea Flora, Austr. J. Bot. 2, 176–196 (1954)Google Scholar
  25. Woodwell, G.M.: Variation in the nutrient content of Quercus alba, Quercus coccinea and Pinus rigida in the Brookhaven forest from bud-break to abscission. Am. J. Bot. 61, 749–753 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. A. Sobrado
    • 1
  • E. Medina
  1. 1.Departamento de Estudios AmbientalesUniversidad Simón BolivarCaracasVenezuela

Personalised recommendations