Advertisement

Educational Studies in Mathematics

, Volume 23, Issue 6, pp 557–568 | Cite as

Cognitive models and problem spaces in “purely random” situations

  • Marie-Paule Lecoutre
Article

Abstract

As part of a study on the natural interpretations of probability, experiments about elementary “purely random” situations (with dice or poker chips) were carried out using students of various backgrounds in the theory of probability. A prior study on cognitive models which analyzed the individual data of more than 600 subjects has shown that the most frequent model used is based on the following incorrect argument: the results to compare are equiprobable because it's a matter of chance; thus, random events are thought to be equiprobable “by nature”. The present paper is divided into two parts. In the first, the findings of a series of experiments are summarized. In the second, the following two hypotheses are tested: (1) Despite their incorrect model, subjects are able to find the correct response. (2) They are more likely to do so when the “chance” aspect of the situation has been masked. An experiment testing 87 students showed, as expected, that there is a way to induce the utilization of an appropriate cognitive model. However, the transfer of this model to a classical random situation is not as frequent as one might expect.

Keywords

Random Event Correct Response Experiment Testing Individual Data Cognitive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, J.-M.: 1991, “Inférence bayésienne et prédictive sur les fréquences”. In H. Rouanet, M.-P. Lecoutre, M.-C. Bert, B. Lecoutre, and J.-M. Bernard (eds.), L'Inférence Statistique dans la Démarche du Chercheur, Peter Lang, Bern, pp. 121–153.Google Scholar
  2. de Finetti, B.: 1974, Theory of Probability (two volumes), Wiley, New York.Google Scholar
  3. Durand, J.-L.: 1989, Jugements Probabilistes dans une Situation Aléatoire: Etude Expérimentale de leur Stabilité, unpublished doctoral thesis, Paris V.Google Scholar
  4. Escarabajal, M.-C. and Richard, J.-F.: 1986, “Le transfert analogique de procédures dans l'interprétation et al résolution de problèmes d'inclusion de classes chez des adultes”, Archives de Psychologie 54, 39–64.Google Scholar
  5. Feyerabend, P.: 1975, Against Method, New York Books, London.Google Scholar
  6. Fischbein, E.: 1987, Intuition in Science and Mathematics: An Educational Approach, D. Reidel, Cambridge.Google Scholar
  7. Fischbein, E., Barbat, I. and Minzat, I.: 1971, “Intuitions primaires et intuitions secondaires dans l'initiation aux probabilités”, Educational Studies in Mathematics 4, 264–280.Google Scholar
  8. Kahneman, D., Slovic, P., and Tversky, A.: 1982, Judgment Under Uncertainty: Heuristics and Biases, Cambridge University Press, New York.Google Scholar
  9. Keren, G.: 1984, “On the importance of identifying the correct ‘problem space’”, Cognition 16, 121–128.Google Scholar
  10. Lecoutre, M.-P.: 1984, “Jugements probabilistes chez des adultes: pratique des jeux de hasard et formation en théorie des probabilités”, Bulletin de Psychologie 38, 891–899.Google Scholar
  11. Lecoutre, M.-P.: 1985, “Effet d'informations de nature combinatoire et de nature fréquentielle sur les jugements probabilistes”, Recherches en Didactique des Mathématiques 6, 193–213.Google Scholar
  12. Lecoutre, M.-P., and Cordier, J.: 1990a, “Réponses et bonnes formes”, Groupe Mathématiques et Psychologie, technical report, Paris V.Google Scholar
  13. Lecoutre, M.-P., and Cordier, J.: 1990b, “Effet du mode de présentation d'un problème aléatoire sur les modèles développés par les élèves”, Bulletin de l'A.P.M.E.P. 372, 9–22.Google Scholar
  14. Lecoutre, M.-P., and Durand, J.-L.: 1988, “Jugements probabilistes et modèles cognitifs: étude d'une situation aléatoire”, Educational Studies in Mathematics 19, 357–368.Google Scholar
  15. Lecoutre, M.-P., Durand, J.-L., and Cordier, J.: 1990, “A study of two biases in probabilistic judgments: Representativeness and equiprobability”, in J.-P. Caverni, J.-M. Fabre and M. Gonzalès (eds.), Cognitive Biases, Elsevier Science Publishers B.V., North Holland, pp. 563–575.Google Scholar
  16. Lecoutre, M.-P., and Lecoutre, B.: 1979, Enseignement Programmé sur l'Utilisation d'une Table de la Distribution Normale, C.D.U.-S.E.D.E.S., Paris.Google Scholar
  17. Maury, S.: 1984, “La quantification des probabilités: analyse des arguments utilisés par les élèves de classe de seconde”, Recherches en Didactique des Mathématiques 6, 198–213.Google Scholar
  18. Maury, S.: 1985, “Influence de la question dans une épreuve relative à la notion d'indépendance”, Educational Studies in Mathematics 16, 283–301.Google Scholar
  19. Nisbett, R., and Ross, L.: 1981, Human Inference: Strategies and Shortcomings of Social Judgments, Englewood Cliffs, NJ, Prentice Hall.Google Scholar
  20. Newell, A., and Simon, H.A.: 1972, Human Problem Solving, Englewood Cliffs, NJ, Prentice Hall.Google Scholar
  21. Poitevineau, J., and Bernard, J.-M.: 1986, “La série des programmes IBF”, Informatique et Sciences Humaines 68–69, 135–137.Google Scholar
  22. Richard, J.-F.: 1984, “Mechanisms of problem solving behavior”, In G. D'Ydevalle (ed.), Cognition, Information Processing and Motivation, North-Holland, Amsterdam, pp. 425–444.Google Scholar
  23. Rouanet, H., LeRoux, B., and Bert, M.-C.: 1987, Statistiques en Sciences Humaines: Procédures Naturelles, Dunod, Paris.Google Scholar
  24. Rouanet, H., Bemard, J.-M., and LeRoux, B.: 1990, Statistiques en Sciences Humaines: Analyse Inductive des Données, Dunod, Paris.Google Scholar
  25. Zaleska, M.: 1974, Influence du mode de présentation des séries aléatoires sur le choix d'une stratégie. 1-Situations hypothétiques, Année Psychologique 74, 125–144.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Marie-Paule Lecoutre
    • 1
    • 2
  1. 1.Groupe Mathématiques et PsychologieC.N.R.S.ParisFrance
  2. 2.Université René DescartesParisFrance

Personalised recommendations