Random hyperplanes meeting a convex body

  • Rolf Schneider
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaschke, W.: Kreis und Kugel: Leipzig 1916. 2nd ed., Berlin: de Gruyter 1956Google Scholar
  2. 2.
    Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Berlin: Springer 1934Google Scholar
  3. 3.
    Busemann, H.: Convex surfaces. New York: Interscience Publ. 1958Google Scholar
  4. 4.
    Janson, S.: On random divisions of a convex set. J. Appl. Probab. 15, 645–649 (1978)Google Scholar
  5. 5.
    Leichtweiß, K.: Konvexe Mengen. Berlin: VEB Deutscher Verlag der Wissenschaften 1980Google Scholar
  6. 6.
    Matheron, G.: Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres poissoniens. Adv. Appl. Probab. 4, 508–541 (1972)Google Scholar
  7. 7.
    Matheron, G.: Un théorème d'unicité pour les hyperplans poissoniens. J. Appl. Probab. 11, 184–189 (1974)Google Scholar
  8. 8.
    Matheron, G.: Random sets and integral geometry. New York: Wiley 1975Google Scholar
  9. 9.
    Miles, R.E.: Random polytopes: the generalisation to n dimensions of the intervals of a Poisson process. Ph. D. Thesis, Cambridge University 1961Google Scholar
  10. 10.
    Miles, R.E.: Poisson flats in Euclidean spaces, Part I: A finite number of random uniform flats. Adv. Appl. Probab. 1, 211–237 (1969)Google Scholar
  11. 11.
    Miles, R.E.: A generalization of a formula of Steiner [To appear in Z. Wahrscheinlichkeitstheorie Verw. Gebiete]Google Scholar
  12. 12.
    Rasson, J.P.: L'entropie des processus de droites. Bull. Soc. Roy. Sci. Liège 45, 288–293 (1976)Google Scholar
  13. 13.
    Santaló, L.A.: Valor medio del número de partes en que una figura convexa es dividida por n rectas arbitrarias. Rev. Unión Mat. Argentina 7, 33–37 (1940–41)Google Scholar
  14. 14.
    Santaló, L.A.: Valor medio del número de regiones en que un cuerpo del espacio es dividido por n pianos arbitrarios. Rev. Unión Mat. Argentina 10, 101–108 (1945)Google Scholar
  15. 15.
    Santaló, L.A.: Integral geometry and geometric probability. Reading, Mass.: Addison-Wesley 1976Google Scholar
  16. 16.
    Schneider, R.: Functional equations connected with rotations and their geometric applications. L'Enseignement math. 16, 297–305 (1970)Google Scholar
  17. 17.
    Weil, W.: Kontinuierliche Linearkombination von Strecken. Math. Z. 148, 71–84 (1976)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Rolf Schneider
    • 1
  1. 1.Mathematisches Institut der UniversitätFreiburg i.Br.

Personalised recommendations