Applied Physics A

, Volume 56, Issue 3, pp 161–167 | Cite as

A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase

  • M. Haluška
  • H. Kuzmany
  • M. Vybornov
  • P. Rogl
  • P. Fejdi
Single-Crystal Fullerenes


Fullerite single crystals were prepared by a sublimation-condensation method in a closed evacuated glass tube situated in a double-temperature-gradient furnace. Crystals of various size and up to 9 mg weight with well expressed smooth and shiny faces were obtained. X-ray analysis, interfacial angle measurements and observed morphological habits of selected crystals of C60 confirm the theoretically predicted and experimentally well established fcc structure at room temperature with two types of morphological faces, namely {111} and {100}. A strong tendency to twinning was observed. In the case of C70 crystals, a pure fcc structure was observed. Information on growth kinetics and on instability versus exposure to air and light were obtained from surface studies. Characteristic changes in a thin surface layer were observed when crystals were exposed to air and light. A new phase of C60 stabilized by oxygen was characterized.


61.50.Cj 81.10.Bk 61.50.Jr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yosida, T. Arai, H. Suematsu: Appl. Phys. Lett. 61, 1043 (1992)Google Scholar
  2. 2.
    R. Ceolin, V. Agafonov, C. Fabre, A. Rassat, A. Dworkin, D. Andre, H. Szwarc, A.J. Schierbeek, P. Bernier, A. Zahab: J. Phys. I (France) 2, 1 (1992)Google Scholar
  3. 3.
    B. Morosin, P.P. Newcomer, R.J. Baughman, E.L. Venturini, D. Loy, J.E. Schirber: Physica C 21 (1991)Google Scholar
  4. 4.
    S. Pekker, G. Faigel, K. Fodor-Csorba, L. Granasy, E. Jakab, M. Tegze: Solid State Commun. 83, 423 (1992)Google Scholar
  5. 5.
    R.M. Fleming, A.R. Kortan, B. Hessen, T. Siegrist, F.A. Thiel, P. Marsh, R.C. Haddon, R. Tycko, G. Dabbagh, M.L. Kaplan, A.M. Mujsce: Phys. Rev. B 44, 888 (1991)Google Scholar
  6. 6.
    R.M. Fleming, T. Siegrist, P.M. Marsh, B. Hessen, A.R. Kortan, D.W. Murphy, R.C. Haddon, R. Tycko, G. Dagbbah, A.M. Mujsce, M.L. Kaplan, S.M. Zahurak: Mater. Res. Soc. Symp. Proc. 206, 691 (1991)Google Scholar
  7. 7.
    R.L. Meng, D. Ramirez, X. Jiang, P.C. Chow, C. Diaz, K. Matsuishi, S.G. Moss, P.H. Hor, C.W. Chu: Appl. Phys. Lett. 5, 3402 (1991)Google Scholar
  8. 8.
    P.N. Sacta, B.I. Greene, A.R. Kortan, N. Kopylov, F.A. Thiel: Chem. Phys. Lett. 190, 184 (1992)Google Scholar
  9. 9.
    M. Haluška, P. Rogl, H. Kuzmany: Springer Ser. Solid-State Sci. (to be published)Google Scholar
  10. 10.
    J. Li, S. Komiya, T. Tamura, C. Nagasaki, J. Kihara, K. Kishio, K. Kitazawa: Physica C 1, 205 (1992)Google Scholar
  11. 11.
    M.A. Verheijen, H. Meekes, G. Meijer, E. Raas, P. Bennema: Chem. Phys. Lett. 191, 339 (1992)Google Scholar
  12. 12.
    M.A. Verheijen, H. Meekes, G. Meijer, P. Bennema, J.L. de Boer, S. van Smaalen, G. van Tandeloo, S. Amelincks, S. Muto, J. van Landuyt: Chem. Phys. 166, 287 (1992)Google Scholar
  13. 13.
    M. Chung, Y. Wang, J.W. Brill, X.-D. Xiang, R. Mostovoy, J.G. Hou, A. Zettl: Phys. Rev. B 4, 13831 (1992)Google Scholar
  14. 14.
    B. Morosin, M.S. Fuhrer, X.-D. Xiang, A. Zettl: (unpublished)Google Scholar
  15. 15.
    J. Abrefah., D.R. Olander, M. Balooch, W.J. Siekhaus: Appl. Phys. Lett. 60, 1313 (1992)Google Scholar
  16. 16.
    M. Matus: Private communicationGoogle Scholar
  17. 17.
    L.D. Marks: J. Crystal Growth 61, 556 (1983)Google Scholar
  18. 18.
    C. Giacovazzo: Crystallographyc computing: In Fundamentals of Crystalography, ed. by C. Giacovazzo (Oxford Science Publication 1992) p. 134Google Scholar
  19. 19.
    F. Rosenberger: Fundamentals of crystal growth from vapors, In Crystal Growth in Science and Technology, ed. by H. Arend, J. Hulliger (Plenum, New York 1987)Google Scholar
  20. 20.
    M.E. Glicksman: Fundamentals of Dendritic Growth, In Crystal Growth in Science and Technology, ed. by H. Arend, J. Hulliger (Plenum, New York 1987) p. 167Google Scholar
  21. 21.
    R.-F. Xiao, J.I.D. Alexander, F. Rosenberger: J. Crystal Growth 109, 43 (1991)Google Scholar
  22. 22.
    J.Q. Li, Z.X. Zhao, Y.L. Li, D.B. Zhu, Z.Z. Gan, D.L. Yin: Physica C 196, 135 (1992)Google Scholar
  23. 23.
    S. Amelinckx, C. van Heurck, D. van Dyck, G. van Tandeloo: Phys. Status Solidi (a) 131, 589 (1992)Google Scholar
  24. 24.
    Z.G. Li, P.J. Fagan: Chem. Phys. Lett. 194, 461 (1992)Google Scholar
  25. 25.
    B. Brezina, J. Fousek: Twinning in Crystals, In Crystal Growth in Science and Technology, ed. by H. Arend, J. Hulliger (Plenum, New York 1987) p. 185Google Scholar
  26. 26.
    S.J. Duclos, R.C. Haddon, S.H. Glarum, A.F. Hebard, K.B. Lyons: Solid State Commun. 80, 481 (1991)Google Scholar
  27. 27.
    P.H. M. Loosdrecht, P.J.M. van Bentum, M.A. Verheijen, G. Meijer: Chem. Phys. Lett. 198, 587 (1992)Google Scholar
  28. 28.
    M. Matus, H. Kuzmany: Appl. Phys. A 56, 241 (1993)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Haluška
    • 1
  • H. Kuzmany
    • 1
  • M. Vybornov
    • 2
  • P. Rogl
    • 2
  • P. Fejdi
    • 3
  1. 1.Institut für FestkörperphysikUniversität wienViennaAustria
  2. 2.Institut für Physikalische ChemieUniversität WienViennaAustria
  3. 3.Department of Mineralogy and Petrology, Faculty of Natural SciencesComenius UniversityBratislavaCzechoslovakia

Personalised recommendations