Advertisement

Parasitology Research

, Volume 74, Issue 4, pp 307–313 | Cite as

Effects of dimethylsulfoxide and the deep-freezing process on the infectivity, motility, and ultrastructure of Trypanosoma cruzi

  • W. Raether
  • R. Michel
  • M. Uphoff
Original Investigations

Abstract

The effects of dimethylsulfoxide (DMSO, final concentration 5%) and the deep-freezing process on the infectivity (ID50), motility, and ultrastructure of nontreated and DMSO-treated Trypanosoma cruzi suspensions (PSG-3 buffer with 10% horse serum) were investigated prior to and after cryopreservation in liquid nitrogen. DMSO equilibration caused distinct suppression of motility and characteristic, fine structural alterations in numerous organelles, such as myelin-like structures in the cytoplasm and/or inside the mitochondrial apparatus, enlargement of the perinuclear space, endoplasmic reticulum, and mitochondrial cristae, as well as condensation of the kinetoplast with loss of its lamellar structure. There was no evidence of loss of infectivity in DMSO-treated parasites. DMSO-treated and deep-frozen organisms showed, however, very similar fine structural alterations, although damage occurring during freezing and thawing was more pronounced. Apart from the frequently enlarged kinetoplast and the loosening of its mitochondrial matrix, numerous trypanosomes revealed total disintegration of the kinetoplast-mitochondrion complex with loss of its whole matrix. Deep-frozen trypanosomes were significantly less infective to mice than nontreated organisms, and their motility was strongly suppressed. These results suggest that cryopreservation and thawing of T. cruzi may lead to severe damage of the mitochondrial apparatus and thus to heavy disorders of metabolic function, exhaustion of the metabolic pool, and finally, to death of such damaged trypanosomes, despite the use of DMSO as a cryoprotective agent.

Keywords

DMSO Endoplasmic Reticulum Liquid Nitrogen Dimethylsulfoxide Severe Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brack C (1968) Elektronenmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma cruzi unter besonderer Berücksichtigung der Entwicklungsformen im übertrÄger Rhodnius prolixus. Acta Trop 25:289–356Google Scholar
  2. Diller KE, Carvalho EG, Huggins CE (1972) Intracellular freezing in biomaterials. Cryobiology 9:429–440Google Scholar
  3. Filardi LS, Brener Z (1975) Cryopreservation of Trypanosoma cruzi bloodstream forms. J Protozool 22:398–401Google Scholar
  4. Godfrey DG, Lanham SM (1971) Diagnosis of Gambian trypanosomiasis in man by isolating trypanosomes from blood passed through DEAE-cellulose. Bull WHO 45:13–19Google Scholar
  5. Ivey MH (1975) Use of solid medium techniques to evaluate factors affecting the ability of Trichomonas vaginalis to survive freezing. J Parasitol 6:1101–1103Google Scholar
  6. Lovelock JE (1953) The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochem Biophys Acta 11:28–36Google Scholar
  7. Lumsden WHR, Herbert WJ, McNeillage GJC (1973) Techniques with trypanosomes. Churchill Livingstone, Edinburgh LondonGoogle Scholar
  8. Mazur P (1970) Cryobiology: The freezing of biological systems. Science 168:939–949Google Scholar
  9. Meryman HT (1971) Cryoprotective agents. Cryobiology 8:173–180Google Scholar
  10. Michel R, Raether W, Schupp E, Uphoff M, Niemeitz H (1979) Feinstrukturelle VerÄnderungen von Toxoplasma gondii — Trophozoiten nach Tiefgefrierung mit Dimethylsulfoxid. Z Parasitenkd 58:211–231Google Scholar
  11. Michel R, Raether W, Schupp E, Uphoff M, Kröll A (1985) Ultrastructural changes of Trichomonas vaginalis prior and after cryopreservation. Z Parasitenkd 71:277–285Google Scholar
  12. Mieth H (1966) Tiefgefrierkonservierung verschiedener Blut und Gewebeprotozoen in flü\igem Stickstoff. Z Tropenmed Parasitol 17:103–108Google Scholar
  13. Mühlpfordt H (1964) über den Kinetoplasten der Flagellaten. Z Tropenmed Parasitol 15:289–323Google Scholar
  14. Raether W, Seidenath H (1972) Verhalten der InfektiositÄt verschiedener Protozoen-Spezies nach lÄngerer Aufbewahrung in flüssigem Stickstoff. Z Tropenmed Parasitol 23:428–431Google Scholar
  15. Raether W, Seidenath H (1973) Der Einflu\ verschiedener physiologischer Lösungen auf die MotilitÄt und InfektiositÄt von Trypanosomen (T. rhodesiense, Frischblut). Z Tropenmed Parasitol 24:285–295Google Scholar
  16. Raether W, Seidenath H (1974) Der Einflu\ verschiedener physiologischer Lösungen auf die MotilitÄt und InfektiositÄt von Trypanosomen nach Tiefgefrierung in flüssigem Stickstoff (T. rhodesiense, T. brucei). Z Tropenmed Parasitol 25:28–41Google Scholar
  17. Raether W, Schupp E, Michel R, Niemeitz H, Uphoff M (1977) Structural changes on Entamoeba histolytica trophozoites after cryopreservation. Z Parasitenkd 54:149–163Google Scholar
  18. Raether W, Schupp E, Michel R, Niemeitz H, Uphoff M (1981) Ultrastructural changes in tissue forms of Leishmania donovani before and after cryopreservation in liquid nitrogen. Z Parasitenkd 66:83–92Google Scholar
  19. Ribeiro dos Santos R, Von Gal Furtado CC, Martins JB, Martins ACP (1978) Influence of cryopreservation at −196‡ C on the vaccinating effectiveness of the “PF” strain of Trypanosoma cruzi. Revata Bras Pesquisas Med Biol 11:99–103Google Scholar
  20. Sanabria A (1963) Ultrastructure of Trypanosoma cruzi in mouse myocardium: I. Trypanosoma form. Exp Parasitol 14:81–91Google Scholar
  21. Sanabria A (1966) Ultrastructure of Trypanosoma cruzi in the rectum of Rhodnius. Exp Parasitol 19:276–299Google Scholar
  22. Schupp E, Michel R, Raether W, Niemeitz H, Uphoff M (1980) Feinstrukturelle VerÄnderungen, InfektiositÄt und MotilitÄt von Trypanosoma brucei vor und nach Tiefgefrierung. Z Parasitenkd 62:213–230Google Scholar
  23. Shepard ML, Goldston CS, Cocks FH (1976) The H2O-NaCl-glycerol phase diagram and its application in cryobiology. Cryobiology 13:9–23Google Scholar
  24. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. Ultrastruct Res 26:31–43Google Scholar
  25. Steiger F (1973) On the ultrastructure of Trypanosoma (Trypanozoon brucei) in the course of its life cycle and some related aspects. Acta Trop Suppl 30:1–2Google Scholar
  26. Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–194Google Scholar
  27. Weinman D (1958) Preservation of trypanosomes by freezing. Trans R Soc Trop Med Hyg 52:294Google Scholar
  28. Woo PTK (1969) The haematocrit centrifuge for the detection of trypanosomes in blood. Can J Zool 47:921–923Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • W. Raether
    • 1
  • R. Michel
    • 2
  • M. Uphoff
    • 1
  1. 1.Hoechst AktiengesellschaftFrankfurt/M. 80Federal Republic of Germany
  2. 2.Ernst-Rodenwaldt-InstitutKoblenzFederal Republic of Germany

Personalised recommendations