A converse to the law of the iterated logarithm

  • V. Strassen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Loève, M.: Probability Theory, The University series in Higher Mathematics, Princeton, 3rd edition (1963).Google Scholar
  2. [2]
    Gnedenko, B. V., and A. N. Kolmogorov: Limit Distributions for Sums of Independent Random Variables, Cambridge, Mass. (1954).Google Scholar
  3. [3]
    Hartman, P., and A. Winter: On the law of the iterated logarithm, Amer. J. Math., 63, 169–176 (1941).Google Scholar
  4. [4]
    Khintchine, A.: über einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta Math., 6, 9–20 (1924).Google Scholar
  5. [5]
    Kolmogorov, A. N.: Das Gesetz des iterierten Logarithmus, Math. Ann. 101, 126–135 (1929).Google Scholar
  6. [6]
    Feller, W.: The law of the iterated logarithm for identically distributed random variables, Ann. of Math., II. Sev. 47, 631–638 (1946).Google Scholar
  7. [7]
    Strassen, V.: An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211–226 (1964).Google Scholar
  8. [8]
    Hewitt, E., and L. J. Savage: Symmetric measures on Cartesian products, Trans. Amer. math. Soc. 80, 470–501 (1955).Google Scholar
  9. [9]
    Skorokhod, A. B.: Studies in the Theory of Random Processes, Reading, Massachusetts (1965).Google Scholar
  10. [10]
    Feller, W.: A limit theorem for random variables with infinite moments, Amer. J. Math. 68, 257–262 (1946).Google Scholar
  11. [11]
    Chow, Y. S., and H. Robbins: On sums of independent random variables with infinite moments and “fair” games, Proc. nat. Acad. Sci. U.S.A. 47, 330–335 (1961).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • V. Strassen
    • 1
    • 2
  1. 1.Department of StatisticsUniversity of CaliforniaBerkeley 4USA
  2. 2.Institut für Mathematische Statistik der Universität GöttingenGermany

Personalised recommendations