Biophysics of structure and mechanism

, Volume 9, Issue 2, pp 131–136 | Cite as

On the role of calcium in chemotaxis and oscillations of dictyostelium cells

  • D. Malchow
  • R. Böhme
  • U. Gras


Migration of differentiated cells to a capillary containing cyclic AMP was enhanced in the presence of 1 mM CaCl2 and was virtually absent in the presence of 1 mM EGTA. Furthermore, the cells contracted and extended pseudopods to a capillary filled with the calcium ionophore A 23187. At short distances, migration to the tip of the capillary was observed. The ionophore also induced transient decreases of the optical density of suspended cells indicating changes of cell shape. These findings support the hypothesis that cyclic AMP-binding to cell surface receptors causes a local influx of calcium ions. These in turn lead to an increase of the cytosolic calcium concentration and subsequently to an activation of cell migration. Perturbing pulses of the ionophore induced permanent phase shifts of free-running light scattering oscillations. This result indicates that cytosolic calcium is an intrinsic component of the oscillatory system.

Key words

Chemotaxis Calcium Oscillation Dictyostelium Ionophore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brachet P, Klein C (1977) Cell responsiveness to cAMP during the aggregation phase of Dictyostelium discoideum. Differentiation 8: 1–8Google Scholar
  2. Brown SS, Yamamoto K, Spudich JA (1982) A 40000-Dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2++-dependent manner. J Cell Biol 93: 205–210Google Scholar
  3. Condeelis JS, Taylor DL (1977) The contractile basis of amoeboid movement. J Cell Biol 74: 901–927Google Scholar
  4. Cone RD, Bonner JT (1980) Evidence for aggregation center induction by the ionophore A 23187 in the cellular slime mold Polyspondylium violaceum. Exp Cell Res 128: 479–485Google Scholar
  5. Gerisch G, Hess B (1974) Cyclic AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proc Natl Acad Sci USA 71: 2118–2122Google Scholar
  6. Gerisch G, Hülser D, Malchow D, Wick U (1975) Cell communication by periodic cyclic AMP pulses. Philos Trans R Soc Lond Ser B 272: 181–192Google Scholar
  7. Gerisch G, Wick U (1975) Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem Biophys Res Commun 65: 364–370Google Scholar
  8. Gerisch G, Malchow D (1976) Cyclic AMP receptors and the control of cell aggregation in Dictyostelium. Adv Cyclic Nucleotide Res 7: 49–68Google Scholar
  9. Gerisch G, Malchow D, Roos W, Wick U (1979) Oscillations of cyclic nucleotide concentrations in relation to the excitability of Dictyostelium cells. J Exp Biol 81: 33–47Google Scholar
  10. Gerisch G (1982) Chemotaxis in Dictyostelium. Annu Rev Physiol 44: 535–552Google Scholar
  11. Klein C (1976) Adenylate cyclase activity in Dictyostelium discoideum amoebae and its changes during differentiation. FEBS Lett 68: 125–128Google Scholar
  12. Loomis WF, Klein C, Brachet P (1978) The effect of divalent cations on aggregation of Dictyostelium discoideum. Differentiation 12: 83–89Google Scholar
  13. Malchow D, Böhme R, Rahmsdorf HJ (1981) Regulation of phosphorylation of myosin heavy chain during the chemotactic response of Dictyostelium cells. Eur J Biochem 117: 213–218Google Scholar
  14. Malchow D, Nanjundiah V, Gerisch G (1978) pH oscillations in cell suspensions of Dictyostelium discoideum: their relation to cyclic AMP signals. J Cell Sci 30: 319–330Google Scholar
  15. Mason JW, Rasmussen H, Dibella F (1971) 3′5′ AMP and Ca2+ in slime mold aggregation. Exp Cell Res 67: 156–160Google Scholar
  16. Taylor DL, Blinks JR, Reynolds G (1980) Contractile basis of amoeboid movement VIII. Aequorin luminescence during amoeboid movement, endoeytosis, and capping. J Cell Biol 86: 599–607Google Scholar
  17. Wick U, Malchow D, Gerisch G (1978) Cyclic AMP stimulated calcium influx into aggregating cells of Dictyostelium discoideum. Cell Biol Int Rep 2: 71–79Google Scholar
  18. Wick U (1979) änderungen der intra- und extrazellulären Konzentrationen von zyklischem AMP, zyklischem GMP, sowie von Calcium während der Bildung von Aggregationssignalen bei Dictyostelium discoideum. Ph D Thesis Univ Tübingen, Germany, pp 60Google Scholar
  19. Wurster B, Bozzaro S, Gerisch G (1978) Cyclic GMP regulation and responses of Polysphondylium violaceum to chemoattractants. Cell Biol Int Rep 2: 61–69Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • D. Malchow
    • 1
  • R. Böhme
    • 1
  • U. Gras
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations