Mammalian Genome

, Volume 6, Issue 11, pp 809–815 | Cite as

Genetic and physical mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) in chicken

  • J. Hu
  • N. Bumstead
  • D. Burke
  • F. A. Ponce de León
  • E. Skamene
  • P. Gros
  • D. Malo
Original Contributions


The chicken natural resistance-associated macrophage protein 1 (NRAMP1) gene has been mapped by linkage analysis by use of a reference panel to develop the chicken molecular genetic linkage map and by fluorescence in situ hybridization. The chicken homolog of the murine Nramp1 gene was mapped to a linkage group located on Chromosome (Chr) 7q13, which includes three genes (CD28, NDUSF1, and EF1B) that have previously been mapped either to mouse Chr 1 or to human Chr 2q. Physical mapping by pulsed-field gel electrophoresis revealed that NRAMP1 is tightly linked to the villin gene and that the genomic organization (gene order and presence of CpG islands) of the chromosomal region carrying NRAMP1 is well conserved between the chicken and mammalian genomes. The regions on mouse Chr 1, human Chr 2q, and chicken Chr 7q that encompass NRAMP1 represent large conserved chromosomal segments between the mammalian and avian genomes. The chromosome mapping of the chicken NRAMP1 gene is a first step in determining its possible role in differential susceptibility to salmonellosis in this species.


Linkage Group Physical Mapping Linkage Analysis Gene Order Genomic Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barendse, W., Armitage, S.M., Kossarek, L.M., Shalom, A., Kirkpatrick, B.W., Ryan, A.M., Clayton, D., Li, L., Neibergs, H.L., Zhang, N., Grosse, W.M., Weiss, J., Creighton, P., McCarthy, F., Ron, M., Teale, A.J., Fries, R., McGraw, R.A., Moore, S.S., Georges, M., Soller, M., Womack, J.E., Hetzel, D.J.S. (1994). A genetic linkage map of the bovine genome. Nature Genet. 6, 227–235.Google Scholar
  2. Barrow, P.A., Huggins, M.B., Lovell, M.A., Simpson, J.M. (1987). Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res. Vet. Sci. 42, 194–199.Google Scholar
  3. Bradley, D.J. (1977). Genetic control of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to L. donavani infections. Clin. Exp. Immunol. 30, 130–140.Google Scholar
  4. Bumstead, N., Barrow, P.A. (1988). Genetics of resistance to Salmonella typhimurium in newly hatched chicks. Br. Poultry Sci. 29, 521–529.Google Scholar
  5. Bumstead, N., Palyga, J. (1992). A preliminary linkage map of the chicken genome. Genomics 13, 690–697.Google Scholar
  6. Bumstead, N., Messer, L.I., Greenwood, N.G. (1987). Use of ev loci as a measure of inbreeding in domestic fowls. Br. Poultry Sci. 28, 717–725.Google Scholar
  7. Bumstead, N., Young, J.R., Tregaskes, C. (1993). TaqI and HaeIII RFLP at the locus encoding the chicken homologue of CD28. Anim. Genet. 24, 328.Google Scholar
  8. Bumstead, N., Wain, H., Salmon, N.S., Silliboume, J. (1995). Genomic mapping of immunological genes. In Advances in Avian Immunological Research, J.F. Davison, ed. Abingdon, UK: Carfax, in prees.Google Scholar
  9. Burt, D.W., Bumstead, N., Bitgood, J.J., Ponce de Leon, F.A., Crittenden, L.B. (1995). Chicken genome mapping: a new era in avian genetics. Trends Genet. 11, 190–194.Google Scholar
  10. Cellier, M., Govoni, G., Vidal, S., Kwan, T., Groulx, N., Liu, J., Sanchez, F., Skamene, E., Schurr, E., Gros, P. (1994). Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J. Exp. Med. 180, 1741–1752.Google Scholar
  11. Copeland, N.G., Jenkins, N.A., Gilbert, D.J., Eppig, J.T., Maltais, L.J., Miller, J.C., Dietrich, W.F., Weaver, A., Lincoln, S.E., Steen, R.G., Stein, L.D., Nadeau, J.H., Lander, E.S. (1993). A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66Google Scholar
  12. Duncan, A.M.V., Chow, W., Robinson, B.H. (1992). Localization of the human 75-kDal Fe-S protein of NADH-coenzyme Q reductase gene (NDUFS1) to 2q33-q34. Cytogenet. Cell Genet. 60, 212–213.Google Scholar
  13. Goto, Y., Buschman E., Skamene, E. (1989). Regulation of host response to Mycobacterium intracellulare in vivo and in vitro by the Bcg gene. Immunogenetics 30, 218–221.Google Scholar
  14. Gros, P., Skamene, E., Forget, A. (1981). Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J. Immunol. 127, 2417–2421.Google Scholar
  15. Gruenheid, S. Cellier, M., Vidal, S., Gros, P. (1995). Identification and characterization of a second mouse Nramp gene. Genomics 25, 514–525.Google Scholar
  16. Hedberg, C.W., David, M.J., White, K.E., MacDonald, K.L., Osterholm M.T. (1993). Role of egg consumption in sporadic Salmonella enteritidis and Salmonella typhimurium infections in Minnesota. J. Infect. Dis. 167, 107–111.Google Scholar
  17. Hibbs, J.B., Jr., Taintor, R.R., Vavrin, Z. (1987). Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473–476.Google Scholar
  18. Howard, T.A., Rochelle, J.M., Seldin, M.F. (1991). CD28 and Ctla-4, two related members of the Ig supergene family, are tightly linked on proximal mouse chromosome 1. Immunogenetics 33, 74–76.Google Scholar
  19. Lafage-Pochitaloff, M., Costello, R., Couez, D., Simonetti, J., Mannoni, P., Mawas, C., Olive, D. (1990). Human CD28 and CTLA-4 Ig superfamily genes are located on chromosome 2 at bands q33-q34. Immunogenetics 31, 198–201.Google Scholar
  20. Levin, I., Santangelo, L., Cheng, H., Crittenden, L.B., Dodgson, J.B. (1994). An autosomal genetic linkage map of the chicken. J. Hered. 85, 79–85.Google Scholar
  21. Liew, F.Y., Millott, S., Parkinson, C., Palmer, R.M.J., Moncada, S. (1990). Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from l-arginine. J. Immunol. 144, 4794–4797.Google Scholar
  22. Lundin L.G. (1993). Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19.Google Scholar
  23. Malo, D., Skamene, E. (1994). Genetic control of host resistance to infection. Trends Genet. 10, 365–371.Google Scholar
  24. Malo, D., Vidal, S., Hu, J., Skamene, E., Gros, P. (1993a). High resolution linkage map in the vicinity of the host resistance locus Bcg. Genomics 16, 655–663.Google Scholar
  25. Malo, D., Vidal, S., Lieman, J.H., Ward, D.C., Gros, P. (1993b). Physical delineation of the minimal chromosomal segment encompassing the murine host resistance locus Bcg. Genomics 17, 667–675.Google Scholar
  26. Malo, D., Vogan, K., Vidal, S., Hu, J., Cellier, M., Schurr, E., Fuks, A., Bumstead, N., Morgan, K., Gros, P. (1994). Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23, 51–61.Google Scholar
  27. Manly, K.E. (1993). A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome 4, 303–313.Google Scholar
  28. Mock, B., Kozak, C., Selden, M.F., Ruff, N., D'Hoostelaere, L., Szpirer, C., Levan, G., Sevanez, H., O'Brien, S., Banner, C. (1989). A glutaminase (gls) gene maps to mouse chromosome 1, rat chromosome 9 and human chromosome 2. Genomics 5, 291–297.Google Scholar
  29. Montagutelli, X. (1990). GENE-LINK—a program in PASCAL for backcross genetic linkage analysis. J. Hered. 81, 490–491.Google Scholar
  30. Nadeau, J.H., Taylor, B.A. (1984). Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818.Google Scholar
  31. O'Brien, A.D., Rosenstreich, D.L., Scher, I., Campbell, G.H., MacDermott, R.P., Formal, S.B. (1980). Genetic control of susceptibility to Salmonella typhimurium infection in mice: role of the Lps gene. J. Immunol. 124, 20–24.Google Scholar
  32. O'Brien, A.D., Taylor, B.A., Rosenstreich, D.L. (1984). Genetic control of natural resistance to Salmonella typhimurium in mice during the late phase of infection. J. Immunol. 133, 3313–3318.Google Scholar
  33. O'Brien, S., Womack, J., Lyons, L.A., Moore, K.J., Jenkins, N.A., Copeland, N.G. (1993). Anchored reference loci for comparative genome mapping in mammals. Nature Genet. 3, 103–112.Google Scholar
  34. Oloffson, B., Bernadi, G. (1976). Organization of nucleotide sequences in the chicken genome. Eur. J. Biochem. 130, 241–245.Google Scholar
  35. Plant, J.E., Glynn, A. (1976). Genetics of resistance to infection with Salmonella typhimurium in mice. J. Infect. Dis. 133, 72–78.Google Scholar
  36. Ponce de León, F.A., Li, Y., Weng, Z. (1992). Early and late replicative chromosomal banding patterns of Gallus domesticus. J. Hered. 82, 36–42.Google Scholar
  37. Rawlings, D.J., Saffran, D.C., Tsukasa, S., Largaespada, D.A., Grimaldi, J.C., Cohen, L., Mohr, R.N., Bazan, J.F., Howard, M., Copeland, N., Jenkins, N.A., Witte, O.N. (1993). Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361.Google Scholar
  38. Rohrer, G.A., Alexander, L.J., Keele, J.W., Smith, T.P., Beattie, C.W. (1994). A microsatellite linkage map of the porcine genome. Genetics 136, 231–245.Google Scholar
  39. Schurr, E., Skamene, E., Morgan, K., Chu, M.-L., Gros, P. (1990). Mapping of Col3al and Col6a3 to proximal murine chromosome 1 identifies conserved linkage of structural protein genes between murine chromosome 1 and human chromosome 2q. Genomics 8, 477–486.Google Scholar
  40. Skamene, E., Gros, P., Forget, A., Patel, P.J., Nesbitt, M. (1984). Regulation of resistance to leprosy by chromosome 1 locus in the mouse. Immunogenetics 19, 117–120.Google Scholar
  41. Spurr, N.K., Cox, S., Naylor, S. (1993). Report and abstracts of the Second International Workshop on Human Chromosome 2 Mapping. Cytogenet. Cell Genet. 64, 69–92.Google Scholar
  42. Tanaka, T., Akira, S., Yoshida, K., Umemoto, M., Yoneda, Y., Shirafuji, N., Fujiwara, H., Suematsu, S., Yoshida, N., Kishimoto, T. (1995). Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361.Google Scholar
  43. Thomas, J.D., Sideras, P., Smith, C.L.E., Vorechovsky, I., Chapman, V., Paul, W.E. (1993). Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358.Google Scholar
  44. Unkles, S.E., Hawker, K.L., Grieve, C., Campell, E.I., Montague, P., Kinghorn, J.R. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88, 204–208.Google Scholar
  45. Vidal, S., Malo, D., Vogan, K., Skamene, E., Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate gene for Bcg. Cell 73, 469–485.Google Scholar
  46. Vidal, S., Belouchi, M., Cellier, M., Beatty, B., Gros, P. (1995a). Cloning and characterization of a second human NRAMP gene on Chromosome 12q13. Mamim. Genome 6, 224–230.Google Scholar
  47. Vidal, S., Tremblay, M., Govoni, G., Sebastiani, G., Malo, D., Olivier, M., Skamene E., Jothy, S., Gros, P. (1995b). The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nrampl gene. J.Exp.Med, in press.Google Scholar
  48. White, J.K., Shaw, M.-A., Barton, C.H., Cerretti, D.P., Williams, H., Mock, B.A., Carter, N.P., Peacock, C.S., Blackwell, J.M. (1994). Genetic and physical mapping of 2q35 in the region of the NRAMP and IL8R genes: identification of a polymorphic repeat in exon 2 of NRAMP. Genomics 24, 295–302.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • J. Hu
    • 1
  • N. Bumstead
    • 4
  • D. Burke
    • 5
  • F. A. Ponce de León
    • 5
  • E. Skamene
    • 1
  • P. Gros
    • 2
  • D. Malo
    • 1
    • 3
  1. 1.Department of MedicineMcGill UniversityMontrealCanada
  2. 2.Department of BiochemistryMcGill UniversityMontrealCanada
  3. 3.Department of Human GeneticsMcGill UniversityMontrealCanada
  4. 4.Institute for Animal HealthComptonEngland, UK
  5. 5.Department of Veterinary and Animal ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations