Mammalian Genome

, Volume 6, Issue 11, pp 793–797

Identification, characterization, and localization to Chromosome 17q21-22 of the human TBX2 homolog, member of a conserved developmental gene family

  • D. J. Law
  • T. Gebuhr
  • N. Garvey
  • S. I. Agulnik
  • L. M. Silver
Original Contributions

Abstract

The T-box motif is present in a family of gene whose structural features and expression patterns support their involvement in developmental gene regulation. Previously, sequence comparisons among the T-box domains of ten vertebrate and invertebrate T-box (Tbx) genes established a phylogenetic tree with three major branches. The Tbx2-related branch includes mouse Mm-Tbx2 and Mm-Tbx3, Drosophila optomotor-blind (Dm-Omb), and Caenorhabditis elegans Ce-Tbx2 and Ce-Tbx7 genes. From the localization of Mm-Tbx2 to Chromosome (Chr) 11, we focused our search for the human homolog, Hs-TBX2, within a region of synteny conservation on Chr 17q. We used Dm-Omb polymerase chain reaction (PCR) primers to amplify a 137-basepair (bp) product from human genomic, Chr 17 monochromosome hybrid, and fetal kidney cDNA templates. The human PCR product showed 89% DNA sequence identity and 100% petide sequence identity to the corresponding T-box segment of Mm-Tbx2. The putative Hs-TBX2 locus was isolated within a YAC contig that included three anonymous markers, D17S792, D17S794, and D17S948, located at Chr 17q21-22. Hybridization-and PCR-based screening of a 15-week fetal kidney cDNA library yielded several TBX2 clones. Sequence analysis of clone λcTBX2-1 confirmed homology to Mm-Tbx2-90% DNA sequence identity over 283 nt, and 96% peptide sequence identity over 94 amino acids. Similar analysis of Hs-TBX2 cosmid 15F11 confirmed the cDNA coding sequence and also identified a 1.7-kb intron located at the same relative position as in Mm-Tbx2. Phylogenetic analyses of the T-box domain sequences found in several vertebrate and invertebrate species further suggested that the putative human TBX2 and mouse Tbx2 are true homologs. Northern blot analysis identified two major TBX2 transcripts of 3.5 and 2.8kb, with high levels of TBX2 expression in fetal kidney and lung; and in adult kidney, lung, ovary, prostate, spleen, and testis. Reduced expression levels were seen in heart, white blood cells, small intestine, and thymus. These results suggest that Hs-TBX2 could play important roles in both developmental and postnatal gene regulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agulnik, S.I., Bollag, R.J., Silver, L.M. (1995). Conservation of the T-box gene from Mus musculus to Caenorhabditis elegans. Genomics 25, 214–219.Google Scholar
  2. Albertsen, M.H., Abderrahim, H., Cann, H.M., Dausset, J., LePaslier, D. Cohen, D. (1990). Construction and characterization of a yeast artificial chromosome library containing seven haploid genome equivalents. Proc. Natl. Acad. Sci. USA 87, 4256–4260.Google Scholar
  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol 215, 403–410.Google Scholar
  4. Bellanné-Chantelot, C., Lacroix, B., Ougen, P., Billault, A., Beaufils, S., Betrand, S., Georges, I., Gilbert, F., Gros, I., Lucotte, G., Susini, L., Codani, J.-J., Gesnouin, P., Pook, S., Vaysseix, G., Lu-Kuo, J., Ried, T., Ward, D., Chumakov, L., LePaslier, D., Barillot, E., Cohen, D. (1992). Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70, 1059–1068.Google Scholar
  5. Bentley, D.R., Todd, C., Collins, J., Holland, J., Dunham, I., Hassock, S., Bankier, A., Giannelli, F. (1992). The development and application of automated gridding for efficient screening of yeast and bacterial gridded libraries. Genomics 12, 534–541.Google Scholar
  6. Bollag, R.J., Siegfried, Z., Cebra-Thomas, J.A., Garvey, N., Davison, E.M., Silver, L.M. (1994) An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nature Genet. 7, 383–389.Google Scholar
  7. Campbell, C., Goodrich, K., Casey, G., Beatty, B. (1995) Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260.Google Scholar
  8. Cohen, D., Chumakov, I., Weissenbach, J. (1993) A first-generation physical map of the human genome. Nature 366, 698–701.Google Scholar
  9. Copeland, N.G., Jenkins, N.A., Gilbert, D.J., Eppig, J.T., Maltais, L.J., Miller, J.C., Dietrich, W.F., Weaver, A., Lincoln, S.E., Steen, R.G., Stein, L.D., Nadueu, J.H., Lander, E.S. (1993) A genetic linkage map of the mouse: current applications and future prospects. Science 262, 57–66.Google Scholar
  10. Deaven, L.L. (1990). Chromosome-specific gene libraries. In The Encyclopedia of Human Biology, R. Dulbecco, ed., (San Diego: Academic Press), Vol. II, pp 455–456.Google Scholar
  11. Feinberg, A.P., Vogelstein, B. (1984). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.Google Scholar
  12. Felsenstein, J. (1991). PHYLIP (Phylogeny Inference Package). Univ. Washington, Seattle.Google Scholar
  13. Feng, D.F., Doolittle, R.F. (1987). Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360.Google Scholar
  14. Flejter, W.L., Barcroft, C.L., Guo, S.-W., Lynch, E.D., Boehnke, M., Chandrasekharappa, S., Hayes, S., Collins, F.S., Weber, B.L., Glover, T.W. (1993). Multicolor FISH mapping with Alu-PCR-amplified YAC clone DNA determines the order of markers in the BRCA1 region on chromosome 17q12-q21. Genomics 17, 624–631.Google Scholar
  15. Godwin, A.K., Vanderveer, L., Schultz, D.C., Lynch, H.T., Altomare, D.A., Buetow, K.H., Daly, M., Getts, L.A., Masny, A., Rosenblum, N., Gogan, M., Ozols, R.F., Hamilton, T.C. (1994). A common region of deletion on chromosome 17q in both sporadic and familial epithelial ovarian tumors distal to BRCAI. Am. J. Hum. Genet. 55, 666–677.Google Scholar
  16. Green, E.D., Olson, M. (1990). Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 1213–1217.Google Scholar
  17. Gyapay, G., Morissette, J., Vignal, A., Dib, C., Fizames, C., Millasseau, P., Marc, S., Lathrop, M., Weissenbach, J. (1994). The 1993–4 Généthon human genetic linkage map. Nature Genet. 7, 246–339.Google Scholar
  18. Kaiser, R., Hunkapiller, T., Heiner, C., Hood, L. (1993). Specific primerdirected DNA sequence analysis using automated fluorescence detection and labeled primers. Methods Enzymol. 218, 122–153.Google Scholar
  19. Kispert, A., Hermann, B.G. (1993). The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 3211–3220.Google Scholar
  20. Kwiatkowski, T.J., Jr., Zoghbi, H.Y., Ledbetter, S.A., Ellison, K.A., Chinault, A.C. (1990). Rapid identification of yeast of artificial chromosome clones by matrix pooling and crude lysate PCR. Nucleic Acids Res. 18, 7191–7192.Google Scholar
  21. Lincoln, S.E., Daly, M.J., Lander, E.S. (1991). PRIMER: a computer program for automatically selecting PCR primers. Version 0.5. MIT Center for Genome Research and Whitehead Institute for Biomedical Research, Cambridge, Mass.Google Scholar
  22. Lossie, A.C., MacPhee, M., Buchberg, A.M., Camper, S.A. (1994). Mouse Chromosome 11. Mamm. Genome 5 (Suppl.), 164–180.Google Scholar
  23. Maddison, W.P., Maddison, D.R. (1992). macClade: analysis of phylogeny and character evolution. (Sunderland, Mass: Sinauer Assoc.).Google Scholar
  24. Maulbecker, C.C., Gruss, P. (1993a). The oncogenic potential of Pax genes. EMBO J. 12, 2361–2367.Google Scholar
  25. Maulbecker, C.C., Gruss, P. (1993b). The oncogenic potential of deregulated homeobox genes. Cell Growth Differ. 4, 431–441.Google Scholar
  26. Park, J.P., Moeschler, J.B., Berg, S.Z., Bauer, R.M., Wurster-Hill, D.H. (1992). A unique de novo interstitial deletion del(17) (q21.3q23) in a phenotypically abnormal infant. Clin Genet. 41, 54–56.Google Scholar
  27. Pearson, W.R., Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.Google Scholar
  28. Pflugfelder, G.O., Roth, H., Poeck, B., Kerscher, S., Schwarz, H., Jonschker, B., Heisenberg, M. (1992a). The lethal(l)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. Proc. Natl. Acad. Sci. USA 89, 1199–1203.Google Scholar
  29. Pflugfelder, G.O., Roth, H., Poeck, B. (1992b). A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem. Biophys. Res. Commun. 186, 918–925.Google Scholar
  30. Rigault, P., Poullier, E. (1994). QUICKMAP: Compact database and navigation tool for integration of CEPH-Genethon mapping data. Abstract A206 in Genome Sequencing and Mapping. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  31. Short, J.M., Fernandez, J.M., Sorge, J.A., Huse, W.D. (1988). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 16, 7583–7600.Google Scholar
  32. Vollrath, D., Davis, R.W. (1987). Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res. 15, 7865–7876.Google Scholar
  33. Wilhelmsen, K.C., Lynch, T., Pavlou, E., Higgins, M. and Nygaard, T.G. (1994). Localization of disinhibition-dementia-Parkinsonism-amyotrophy complex to 17q21-22. Am. J. Hum. Genet. 55, 1159–1165.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • D. J. Law
    • 1
    • 2
  • T. Gebuhr
    • 1
    • 2
  • N. Garvey
    • 3
  • S. I. Agulnik
    • 3
  • L. M. Silver
    • 3
  1. 1.Human Genome CenterUniversity of MichiganAnn ArborUSA
  2. 2.Department of Human GeneticsUniversity of MichiganAnn ArborUSA
  3. 3.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations