Itô excursion theory via resolvents

  • L. C. G. Rogers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feller, W.: Generalised second order differential operators and their lateral conditions. Illinois J. Math. 1, 459–504 (1957)Google Scholar
  2. 2.
    Fristedt, B.: Sample functions of stochastic processes with stationary independent increments. Advances in Probability 3. New York: Dekker 1974Google Scholar
  3. 3.
    Getoor, R.K.: Markov Processes: Ray Processes and Right Processes. Lecture Notes in Mathematics 440, Berlin, Heidelberg, New York: Springer 1975Google Scholar
  4. 4.
    Getoor, R.K., Sharpe, M.J.: Last exit times and additive functionals. Ann. Probab. 1, 550–569 (1973)Google Scholar
  5. 5.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Amsterdam-Tokyo: North Holland-Kodansha 1981Google Scholar
  6. 6.
    Itô, K.: Poisson point processes attached to Markov processes. Proc. 6th Berkeley Sympos. Math. Statist. Probab. Vol. 3, University of California Press, 225–240 (1971)Google Scholar
  7. 7.
    Itô, K., McKean, H.P.: Brownian motion on a half line. Illinois J. Math. 7, 181–231 (1963)Google Scholar
  8. 8.
    Itô, K., McKean, H.P.: Diffusion Processes and their Sample Paths. Berlin, Heidelberg, New York: Springer 1965Google Scholar
  9. 9.
    Jeulin, T.: Un théorème de J.W. Pitman. Séminaire de Probabilités XIII, 521–532. Lecture Noes in Mathematics 721. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  10. 10.
    Neveu, J.: Entrance, exit and fictitious states for Markov chains. Proc. Aarhus Colloq. Combin. Probab. 64–68 (1962)Google Scholar
  11. 11.
    Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. J. Appl. Probab. 7, 511–526 (1975)Google Scholar
  12. 12.
    Reuter, G.E.H.: Denumerable Markov Processes (II). J. London Math. Soc. 34, 81–91 (1959)Google Scholar
  13. 13.
    Rogers, L.C.G.: Williams' characterisation of the Brownian excursion law: proof and applications. Séminaire de Probabilités XV, 227–250. Lecture Notes in Mathematics 850. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  14. 14.
    Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9, 573–582 (1981)Google Scholar
  15. 15.
    Walsh, J.B.: A diffusion with a discontinuous local time. Temps locaux, Asterisque 52–53, 37–45 (1978)Google Scholar
  16. 16.
    Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. (3) 28, 738–768 (1974)Google Scholar
  17. 17.
    Williams, D.: On Lévy's downcrossing theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 157–158 (1977)Google Scholar
  18. 18.
    Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. I. Chichester: Wiley 1979Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • L. C. G. Rogers
    • 1
  1. 1.Department of StatisticsUniversity of WarwickCoventryGreat Britain

Personalised recommendations