Biophysics of structure and mechanism

, Volume 4, Issue 1, pp 67–85

The heterogenious solubility of oxygen in aqueous lecithin dispersions and its relation to chain mobility

A NMR relaxation and wide-line study
  • A. Peters
  • R. Kimmich


A method is described that allows to determine the oxygen concentration in microscopic subphases, such as lipid bilayers, by measuring the enhancement of NMR spin-lattice relaxation (T1) caused by paramagnetic oxygen. The presence of oxygen itself provides the measuring effect, which has the advantage of the lack of any distortions by large probe molecules in the system. The T1-jump of the water protons of a dipalmitoyl lecithin (DPL)/water-dispersion at the phase transition yields information about the O2-solubility in the DPL bilayers.

The results can be interpreted in a straightforward way in terms of a two phase model DPL/H2O. The measurements indicate, however, that a more appropriate approach is possible if a three-phase system DPL/bound water/free water is taken into account. The O2-partition coefficients and the free enthalpies of solution are evaluated for all subsystems in both models.

The oxygen solubility in paraffin chains is obviously connected to the defect structure. A comparison is drawn between n-paraffins and the DPL fatty-acid chains. The gel-state of DPL lamellae does not correspond to the crystalline paraffin state, but rather to the more disordered rotator-phase. To emphasize this, NMR second moment data of DPL and some n-alkanes are compared.

Key words

Oxygen-Solubility Lipid bilayers NMR relaxation Defect structure NMR second moment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A.: The principles of nuclear magnetism. Oxford: Clarendon Press 1970Google Scholar
  2. Andreev, N. N., Kulikova, L. E.: K voprosu o perechode iz rastivorennogo sostojanija v dispersnoe. Žurnal obščey Chim. 5, 366–370 (1935)Google Scholar
  3. D'Ans, Lax: Taschenbuch für Chemiker und Physiker, Bd. I, 3rd Edition. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  4. Bersohn, M., Baird, J. C.: An introduction to electron paramagnetic resonance. New York: Benjamin 1966Google Scholar
  5. Bloembergen, N., Purcell, E. M., Pound, R. V.: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948)Google Scholar
  6. Chapman, D., Williams, R. M., Ladbrooke, B. D.: Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). Chem. Phys. Lipids 1, 445–475 (1967)Google Scholar
  7. Clare, N. D.: Supersaturation of gases in liquids. Trans. Soc. Can. [3] 19 III, 32–33 (1925)Google Scholar
  8. Dost, K.: Die Löslichkeit des Luftsauerstoffs im Wasser. Mitt. Prüfungsanst. Wasserversorg. AbwÄsserbeseitigung (Berlin) 7, 168–171 (1906)Google Scholar
  9. Fischkoff, S., Vanderkooi, J. M.: Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J. gen. Physiol. 65, 663–676 (1975)Google Scholar
  10. Gottlieb, A. M., Inglefield, P. T., Lange, Y.: Water-lecithin binding in lecithin-water lamellar phases at 20‡ C. Biochim. biophys. Acta (Amst.) 307, 444–451 (1973)Google Scholar
  11. Hausser, R., Noack, F.: Kernmagnetische Relaxation und Korrelation im System Wasser-Sauerstoff. Z. Naturforsch. 20a, 1668–1675 (1965)Google Scholar
  12. Hinz, H.-J., Sturtevant, J. M.: Calorimetric studies of dilute aqueous suspensions, of bilayers formed from synthetic L-α-lecithins. J. biol. Chem. 247, 6071–6075 (1972)Google Scholar
  13. Horwitz, A. F., Michaelson, D., Klein, M. P.: Magnetic resonance studies on membrane and model membrane systems. III. Fatty acid motions in aqueous lecithin dispersions. Biochim. biophys. Acta (Amst.) 298, 1–7 (1973)Google Scholar
  14. Jackson, M. B.: A Β-coupled gauche kink description of the lipid bilayer phase transition. Biochemistry 15, 2555–2561 (1976)Google Scholar
  15. Kimmich, R.: Consequences of restricted defect diffusion on NMR and dielectric relaxation. Z. Naturforsch. 31a, 693–696 (1976)Google Scholar
  16. Kimmich, R., Peters, A.: Defect diffusion in crystalline lipid lamellae and nuclear magnetic relaxation behaviour. J. Magnetic Resonance 19, 144–165 (1975)Google Scholar
  17. Kimmich, R., Peters, A.: Solvation of oxygen in lecithin bilayers. Chem. Phys. Lipids 14, 350–362 (1975)Google Scholar
  18. Krause, A., Kapitańczyk, K.: über kolloide Gase. III. Kolloide Luft und kolloider Sauerstoff mit einer BlÄschengrö\e von 5 ΜΜ bzw. 3 ΜΜ Teilchendurchmesser. Kolloid-Z. 71, 55–60 (1935)Google Scholar
  19. Odajima, A., Sauer, J. A., Woodward, A. E.: Proton magnetic resonance of some normal paraffins and polyethylene. J. Phys. Chem. 66, 718–724 (1962)Google Scholar
  20. Pechhold, W.: Molekülbewegung in Polymeren. I. Teil: Konzept einer Festkörperphysik makromolekularer Stoffe. Kolloid-Z. Z. Polymere 228, 1–38 (1968)Google Scholar
  21. Metschl, J.: The supersaturation of gases in water and certain organic liquids. J. Phys. Chem. 28, 417–437 (1924)Google Scholar
  22. Salsbury, N. J., Darke, A., Chapman, D.: Deuteron magnetic resonance studies of water associated with phospholipids. Chem. Phys. Lipids 8, 142–151 (1972)Google Scholar
  23. Schmauder, K.: Untersuchungen zum 2. Moment und zur Linienform der Kernresonanzabsorptionslinien von PolyÄthylen mit der Impulsmethode. Ulm: Diplomarbeit 1976Google Scholar
  24. Seelig, A., Seelig, J.: The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13, 4839–3844 (1974)Google Scholar
  25. TrÄuble, H.: Phase transitions in lipids. In: Biomembranes, vol. 3. Passive permeability of cell membranes (eds. F. Kreuzer, J. F. G. Slegers). New York-London: Plenum Press 1972Google Scholar
  26. TrÄuble, H.: The movement of molecules across lipid membranes: A molecular theory. J. Membrane Biol. 4, 193–208 (1971)Google Scholar
  27. TrÄuble, H., Eibl, H.: Cooperative structural changes in lipid bilayers. In: Functional linkage in biomolecular systems, Chapt. III. Molecular interactions in lipid bilayers (eds. F. O. Schmitt, D. M. Schneider, D. M., Crothers). New York: Raven Press 1975Google Scholar
  28. Veksli, Z., Salsbury, N. J., Chapman, D.: Physical studies of phospholipids. XII. Nuclear magnetic resonance studies of molecular motion in some pure lecithin-water systems. Biochim. biophys. Acta (Amst.) 183, 434–446 (1969)Google Scholar
  29. Zimmerman, J. R., Brittin, W. E.: Nuclear magnetic-resonance studies in multiple phase systems: Lifetime of a water molecule in an adsorbing phase on silica gel. J. Phys. Chem. 61, 1328–1333 (1957)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Peters
    • 1
  • R. Kimmich
    • 1
  1. 1.Sektion KernresonanzspektroskopieUniversitÄt UlmUlm/DonauFederal Republic of Germany

Personalised recommendations