Advertisement

Fluorescenzmikroskopische Untersuchungen über die Wirkung des Prenylamins auf noradrenergische Nerven

  • H. Grobecker
  • T. Malmfors
Article

Zusammenfassung

1. Prenylamin (Segontin®) führte in vivo zu einer Abnahme der für Noradrenalin charakteristischen Grün-Fluorescenz in den sympathischen Nerven der Ratteniris und anderer Organe (Herz, Milz, Submandibularis, Vas deferens). In Rattenherzen verlief die Abschwächung der Fluorescenz zeitlich parallel der Abnahme des biochemisch bestimmten Noradrenalingehaltes.

I.v. Injektion von Noradrenalin restituierte die nach 16 Std maximal abgeschwächte Fluorescenz sowohl im Axoplasma der Nerven als auch in den Varicositäten der Nervenendigungen.

Hemmstoffe der Monoaminoxydase verhinderten die durch Prenylamin verursachte Fluorescenzabnahme.

2. Die Restitution der nach Verabfolgung von Reserpin oder von H 44/68 (Methylester des α-Methyl-p-tyrosins) verschwundenen Fluorescenz der Irisnerven durch Noradrenalin (i.v.) wurde durch Prenylamin, 30 min vor Noradrenalin verabfolgt, gehemmt bzw. verhindert.

3. Auch in vitro — Inkubation der Ratteniris in Krebs-Ringer-Bicarbonatpuffer — nahm die Fluorescenzintensität der Nerven in Gegenwart von Prenylamin ab. Die Wirkung war abhängig von der Prenylaminkonzentration sowie von der Inkubationszeit und -temperatur.

4. Die Ergebnisse stützen die aufgrund pharmakologischer und biochemischer Untersuchungen gemachte Annahme, daß der Wirkungscharakter des Prenylamins demjenigen eines indirekt wirkenden sympathicomimetischen Amins entspricht (Amphetaminanteil des Moleküls), modifiziert durch den lipophilen Diphenylpropylanteil, der dem Gesamtmolekül erhöhte Affinität zu Zell- und Granulamembranen verleiht.

Schlüsselwörter

Prenylamin (Segontin®Fluorescenzmikroskopische Untersuchungen Freisetzung von Noradrenalin Hemmung der Noradrenalinaufnahme 

Fluorescence microscopic investigations on the effect of prenylamine on noradrenergic nerves

Summary

1. Prenylamine (Segontin®) caused in vivo a decrease in the specific fluorescence due to noradrenaline in the sympathetic nerves of rat iris and other organs (heart, spleen, submaxillary gland, vas deferens). In the rat heart the depletion of noradrenaline as determined chemically ran parallel with the decline of fluorescence in the nerve terminals.

16 hours after the administration of prenylamine a very weak fluorescence remained in iris nerves. I.v. injection of noradrenaline led to a restitution of the fluorescence in both the axoplasm and the varicosities.

Monoaminoxidase inhibitors prevented the disappearance, produced by prenylamine, of the fluorescence in the nerves.

2. The fluorescence of iris nerves disappeared after injection of reserpine or H 44/68 (methylester of α-methyl-p-tyrosine). The restoration of the fluorescence by i.v. injection of noradrenaline was prevented by prenylamine given 30 min before.

3. Also after incubation of irises in vitro in Krebs-Ringer-bicarbonate buffer containing prenylamine, a decreased fluorescence intensity of the noradrenergic nerves was observed. This effect was dependent on prenylamine concentration, time of incubation and temperature.

4. The results are in agreement with the hypothesis, which is based on pharmacological and biochemical investigations, that prenylamine behaves like an indirectly acting sympathomimetic amine (amphetamine moiety of the molecule). This action is, however, modified by the lipophilic diphenylpropyl moiety of the molecule, which provides the drug with a high affinity to membranes of cells and granules.

Key-Words

Prenylamine (Segontin®Fluorescence-Microscopic Investigations Release of Noradrenaline Inhibition of Noradrenaline Uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Carlsson, A., and M. Lindqvist: The interference of tetrabenazine, benzquinamide and prenylamine with the action of reserpine. Acta pharmacol. (Kbh.) 24, 112–120 (1966).Google Scholar
  2. Corrodi, H., u. N.-Å. Hillarp: Fluorescenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 1. Identifizierung der fluorescierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv. chim. Acta 46, 2425–2430 (1963).Google Scholar
  3. ——, and G. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).Google Scholar
  4. Dahlström, A., and K. Fuxe: Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62, Suppl. 232, 1–55 (1964).Google Scholar
  5. Euler, U. S. v., and F. Lishajko: Improved technique for the fluorimetric estimation of catecholamines. Acta physiol. scand. 51, 348–356 (1961).Google Scholar
  6. Falck, B., N.-Å. Hillarp, G. Thieme, and A. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).Google Scholar
  7. Fuxe, K., H. Grobecker, and T. Hökfelt: The effect of prenylamine on central catecholamine and 5-Hydroxy-tryptamine neurons. In: International conference on biochemical aspects of prenylamine. Biochem. appl. (in press) (1968).Google Scholar
  8. Grobecker, H., P. Holtz, D. Palm, I. J. Bak, and R. Hassler: In vitro lysis of chromaffine granules and erythrocytes by prenylamine. Experientia (Basel) 24, 701–703 (1968a).Google Scholar
  9. —— and P. Holtz: Adrenergic and “anti-adrenergic” action of prenylamine. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 259, 174–176 (1968b).Google Scholar
  10. —— —— —— Zur Pharmakologie des Prenylamins. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 379–399 (1968c).Google Scholar
  11. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta physiol. scand. Suppl. 295, 1–56 (1967).Google Scholar
  12. Holtz, P., u. D. Palm: Brenzcatechinamine und andere Sympathicomimetische Amine. Biosynthese und Inaktivierung, Freisetzung und Wirkung. Ergebn. Physiol. 58, 1–580 (1966).Google Scholar
  13. Hökfelt, T.: Electron microscopic observations on nerve terminals in the intrinsic muscles of the albino rat iris. Acta physiol. scand. 67, 255–256 (1966).Google Scholar
  14. Jonsson, J., H. Grobecker, and P. Holtz: Effect of β-phenylethylamine on content and subcellular distribution of norepinephrine in rat heart and brain. Life Sci. 5, 2235–2246 (1966).Google Scholar
  15. Lembeck, F., u. H. Held: Serotoninfreisetzung aus isolierten Granula enterochromaffiner Zellen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 409–420 (1966).Google Scholar
  16. Malmfors, T.: Studies on adrenergic nerves. Acta physiol. scand. 64, Suppl. 248 1–93 (1965).Google Scholar
  17. —— Fluorescent histochemical studies on the uptake, storage, and release of catecholamines. Circulat. Res. 21, Suppl. III, 25–42 (1967).Google Scholar
  18. Obianwu, H.: The effect of prenylamine (Segontin®) on the amine levels of brain, heart and adrenal medulla in rats. Acta pharmacol. (Kbh.) 23, 383–390 (1965).Google Scholar
  19. Palm, D., and H. Grobecker: On the metabolism of prenylamine (Segontin®). Experientia (Basel) 24, 467–469 (1968).Google Scholar
  20. Ritzén, M.: Quantitative fluorescence microspectrophotometry of catecholamine — formaldehyde products. Model experiments. Exp. Cell Res. 44, 505–520 (1966).Google Scholar
  21. Schöne, H. H., u. E. Lindner: Die Wirkung des N-(3′-Phenylpropyl-(2′)-1,1-diphenylpropyl-(3)-amins auf den Stoffwechsel von Serotonin und Noradrenalin. Arzneimittel-Forsch. 10, 583–585 (1960).Google Scholar
  22. Shore, P. A., H. S. Alpers, and D. Busfield: On the mechanism of norepinephrine depletion by reserpine, metaraminol and related compounds and antogonism by monoamine oxidase inhibition. In: Mechanisms of release of biogenic amines. Proc. Int. Wenner-Gren-Center Symposium, Stockholm 1965, eds. U. S. v. Euler, S. Rosell, and B. Uvnäs, p. 319–329. Oxford-London-Edinburgh-New York-Toronto-Paris-Braunschweig: Pergamon Press 1966.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • H. Grobecker
    • 1
  • T. Malmfors
    • 2
  1. 1.Pharmakologisches Institut der Universität Frankfurt a. M.Germany
  2. 2.Histologische Abteilung des Karolinska Institutes StockholmSweden

Personalised recommendations