Biophysics of structure and mechanism

, Volume 1, Issue 4, pp 295–309 | Cite as

1/f Membrane noise generated by diffusion processes in unstirred solution layers

  • B. Neumcke
Article

Abstract

A mathematical treatment is given for 1/f noise observed in the ion transport through membranes. It is shown that this noise can be generated by current or voltage fluctuations which occur after step changes of the membrane permeability. Due to diffusion polarization in the unstirred solution layers near the membrane these fluctuations exhibit a 1/√t time course which produces noise with a 1/f frequency dependence. The spectral density of 1/f noise is calculated for porous membranes with random switches between a finite and zero pore permeability. A wide frequency range and a magnitude of 1/f noise are obtained which are compatible with experimental data of 1/f noise reported for nerve membranes.

Key words

1/f Noise Nerve membrane Membrane pore Single file transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezanilla, F., Armstrong, C. M.: Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. gen. Physiol. 60, 588–608 (1972)Google Scholar
  2. Bird, J. F.: Noise spectrum analysis of a Markov process vs random walk computer solutions simulating 1/f noise spectra. J. Appl. Phys. 45, 499–500 (1974)Google Scholar
  3. Carslaw, H., Jaeger, J.: Conduction of heat in solids. Oxford: Clarendon Press 1959Google Scholar
  4. Conti, F., DeFelice, L. J., Wanke, E.: K+ and Na+ current noise in the membrane of the squid giant axon. J. Physiol. (Lond.) 248, 45–82 (1975)Google Scholar
  5. Dorset, D. L., Fishman, H. M.: Excess electrical noise during current flow through porous membranes separating ionic solutions. J. Membrane Biol. 21, 291–309 (1975)Google Scholar
  6. Fishman, H. M.: Relaxation spectra of potassium channel noise from squid axon membranes. Proc. nat. Acad. Sci. (Wash.) 70, 876–879 (1973)Google Scholar
  7. Halford, D.: A general mechanical model for 308-01 spectral density random noise with special reference to flicker noise 1/¦f¦. Proc. IEEE 56, 251–258 (1968)Google Scholar
  8. Heckmann, K.: Single file diffusion. In: Biomembranes, vol. 3 (eds. F. Kreuzer, J. F. G. Slegers). New York-London: Plenum Press 1972Google Scholar
  9. Heiden, C.: Power spectrum of stochastic pulse sequences with correlation between the pulse parameters. Phys. Rev. 188, 319–326 (1969)Google Scholar
  10. Hill, T. L., Chen, Y.-D.: On the theory of ion transport across the nerve membrane. IV Noise from the open close kinetics of K+ channels. Biophys. J. 12, 948–959 (1972)Google Scholar
  11. Hille, B.: Pharmacological modifications of the sodium channels of frog nerve. J. gen. Physiol. 51, 199–219 (1968)Google Scholar
  12. Hille, B.: Potassium channels in myelinated nerve: Selective permeability to small cations. J. gen. Physiol. 61, 669–686 (1973)Google Scholar
  13. Hodgkin, A. L., Keynes, R. D.: The potassium permeability of a giant nerve fibre. J. Phys. (Lond.) 128, 61–88 (1955)Google Scholar
  14. Hooge, F. N., Gaal, J. L. M.: Fluctuations with a 1/f spectrum in the conductance of ionic solutions and in the voltage of concentration cells. Philips Res. Repts. 26, 7–90 (1971)Google Scholar
  15. Kingston, R. H., McWhorter, A. L.: Relaxation time of surface states on Germanium. Phys. Rev. 103, 534–540 (1956)Google Scholar
  16. LÄuger, P., Neumcke, B.: Theoretical analysis of ion conductance in lipid bilayer membranes. In: Membranes, a series of advances, vol. 2 (ed. G. Eisenman). New York: Dekker 1973Google Scholar
  17. LeBlanc, O. H.: Tetraphenylborate conductance through lipid bilayer membranes. Biochim. biophys. Acta (Amst.) 193, 350–360 (1969)Google Scholar
  18. Neumcke, B.: Diffusion polarization at lipid bilayer membranes. Biophysik 7, 95–105 (1971)Google Scholar
  19. Offner, F. F.: 1/f noise in semiconductors. J. Appl. Phys. 41, 5033–5034 (1970)Google Scholar
  20. Offner, F. F.: Comments on “Modified random-walk model of 1/f noise”. J. Appl. Phys. 43, 1277–1278 (1972)Google Scholar
  21. Poussart, D. J. M.: Membrane current noise in lobster axon under voltage clamp. Biophys. J. 11, 211–234 (1971)Google Scholar
  22. Schick, K. L.: Power spectra of pulse sequences and implications for membrane fluctuations. Acta biotheor. (Leiden) 23, 1–17 (1974)Google Scholar
  23. Schick, K. L., Verveen, A. A.: 1/f noise with a low frequency white noise limit. Nature 251, 599–601 (1974)Google Scholar
  24. Schönfeld, H.: Beitrag zum 1/f-Gesetz beim Rauschen von Halbleitern. Z. Naturforsch. 10a, 291–300 (1955)Google Scholar
  25. Siebenga, E., Meyer, A. W. A., Verveen, A. A.: Membrane shot-noise in electrically depolarized nodes of Ranvier. Pflügers Arch. ges. Physiol. 341, 87–96 (1973)Google Scholar
  26. Ulbricht, W.: Ionic channels through the axon membrane (A review). Biophys. Struct. Mech. 1, 1–16 (1974)Google Scholar
  27. Verveen, A. A., DeFelice, L. J.: Membrane noise. Progr. Biophys. molec. Biol. 28, 189–265 (1974)Google Scholar
  28. Wanke, E., DeFelice, L. J., Conti, F.: Voltage noise, current noise and impedance in space clamped squid giant axon. Pflügers Arch. ges. Physiol. 347, 63–74 (1974)Google Scholar
  29. Ziel, A. van der: Noise: Sources, characterization, measurement. Englewood Cliffs, N.J.: Prentice-Hall 1970Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • B. Neumcke
    • 1
  1. 1.I. Physiologisches Institut der UniversitÄt des SaarlandesHomburg-SaarGermany

Personalised recommendations