An approximate zero-one law

  • Lucio Russo
Article

Summary

We prove an approximate zero-one law, which holds for finite Bernoulli schemes. An application to percolation theory is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broadbent, S.R., Hammersley, J.M.: Percolation processes. I, II. Proc. Cambridge Philos. Soc. 53, 629–641 and 642–645 (1959)Google Scholar
  2. 2.
    Hewitt, E., Savage, L.J.: Symmetric measures on cartesian products. Trans. Amer. Math. Soc. 80, 470–501 (1955)Google Scholar
  3. 3.
    Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys. 74, 41–59 (1980)Google Scholar
  4. 4.
    Kesten, H.: Exact results in percolation (preprint)Google Scholar
  5. 5.
    Russo, L.: On the critical percolation probabilities. Z.Wahrscheinlichkeitstheorie verw. Geb. 56, 229–237 (1981)Google Scholar
  6. 6.
    Russo, L.: A note on percolation. Z.Wahrscheinlichkeitstheorie verw. Geb. 43, 39–48 (1978)Google Scholar
  7. 7.
    Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227–245 (1978)Google Scholar
  8. 8.
    Wierman, J.C.: Bond percolation on honeycomb and triangular lattices (preprint)Google Scholar
  9. 9.
    Fisher, M.E.: Critical probabilities for cluster size and percolation problems. J. Math. Phys. 2, 620–627 (1961)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Lucio Russo
    • 1
  1. 1.Istituto MatematicoUniversità di ModenaModenaItaly

Personalised recommendations