Advertisement

Temps d'arrÊt d'un système dynamique

  • J. Neveu
Article

Summary

The most general positive integer-valued random variable v such that for a given bijective measure preserving transformation θ, the transformation θ v is still bijective and measure preserving is shown to be a (generally infinite) superposition of return times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Dye, H.: On groups of measure preserving transformations. Amer. J. Math. 81, 119–159 (1959).Google Scholar
  2. Jacobs, K.: Lecture Notes on ergodic theory. (Aarhus) 1962–1963.Google Scholar
  3. Neveu, J.: Temps d'arrÊt d'un système dynamique. C. R. Acad. Sci. Paris 267, 421–422 (1968).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • J. Neveu
    • 1
  1. 1.Faculté des Sciences Département de MathématiquesUniversité de ParisParis (5e)France

Personalised recommendations