Biophysics of structure and mechanism

, Volume 3, Issue 1, pp 69–77 | Cite as

What does Halobacterium tell us about photoreception?

  • E. Hildebrand


A photosensory mechanism is proposed for Halobacterium halobium based on the observation of light-induced motor responses. Possible mechanisms of signal transduction in Halobacterium are discussed. Bacteriorhodopsin and the visual pigment rhodopsin are compared with respect to their structural and functional properties. The conclusion is drawn that Halobacterium may help to understand primary photochemical events of rhodopsin rather than the transduction mechanism of visual photoreceptors.

Key words

Bacteria Photophobic response Rhodopsin Membrane Sensory transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, H. C.: Bacterial behaviour. Nature (Lond.) 254, 389–392 (1973)Google Scholar
  2. Blaurock, A. E., Stoeckenius, W.: Structure of the purple membrane. Nature, New Biol. (Lond.) 233, 152–154 (1971)Google Scholar
  3. Busch, G. E., Applebury, M., Lamola, A. A., Rentzepis, P. M.: Formation and decay of prelumirhodopsin at room temperature. Proc. nat. Acad. Sci. (Wash.) 69, 2802–2806 (1972)Google Scholar
  4. Christian, J. H. B., Waltho, J.: Solute concentrations within cells of halophilic and nonhalophilic bacteria. Biochim. biophys. Acta (Amst.) 65, 506–508 (1962)Google Scholar
  5. Clayton, R. K.: On the interplay of environmental factors affecting taxis and motility in Rhodospirillum rubrum. Arch. Mikrobiol. 29, 189–212 (1958)Google Scholar
  6. Cone, R. A.: Rhodopsin — Rotational diffusion in the visual receptor membrane. Nature, New Biol. (Lond.) 236, 39–43 (1972)Google Scholar
  7. Danon, A., Stoeckenius, W.: Photophosphorylation in Halobacterium halobium. Proc. nat. Acad. Sci. (Wash.) 71, 1234–1238 (1974)Google Scholar
  8. Dencher, N., Wilms, M.: Flash photometric experiments on the photochemical cycle of bacteriorhodopsin. Biophys. Struct. Mechanism 1, 259–271 (1975)Google Scholar
  9. Drachev, L. A., Kaulen, A. D., Ostroumov, S. A., Skulachev, V. P.: Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane. FEBS-Lett. 39, 43–45 (1974)Google Scholar
  10. Eckert, R.: Bioelectric control of ciliary activity. Science 176, 473–481 (1972)Google Scholar
  11. Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and Physiology of Visual Pigments (ed. by H. Langer), p. 155–166. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  12. Henderson, R.: The structure of the purple membrane from Halobacterium halobium: Analysis of the X-ray diffraction pattern. J. molec. Biol. 93, 123–138 (1975)Google Scholar
  13. Hildebrand, E., Dencher, N.: Two photosystems controlling behavioural responses of Halobacterium halobium. Nature (Lond.) 257, 46–48 (1975)Google Scholar
  14. Houwink, A. L.: Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J. gen. Microbiol. 15, 146–150 (1956)Google Scholar
  15. Hubbard, R., Kropf, A.: Molecular aspects of visual excitation. Ann. N.Y. Acad. Sci. 81, 388–398 (1959)Google Scholar
  16. Hubbard, R., St. Georges, R. C. C.: The rhodopsin system of the squid. J. gen. Physiol. 41, 501–528 (1958)Google Scholar
  17. Hubbard, R., Bownds, D., Yoshizawa, T.: The chemistry of visual photoreception. Cold Spr. Harb. Symp. Quant. Biol. 30, 301–315 (1965)Google Scholar
  18. Kaufmann, K. J., Rentzepis, P. M., Stoeckenius, W., Lewis, A.: Primary photochemical processes in bacteriorhodopsin. Biochem. biophys. Res. Commun. 68, 1109–1115 (1976)Google Scholar
  19. Kayushin, L. P., Skulachev, V. P.: Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating δψ and δ pH. FEBS-Lett. 39, 39–42 (1974)Google Scholar
  20. Larsen, S. H., Adler, J., Gargus, J. J., Hogg, R. W.: Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria. Proc. nat. Acad. Sci. (Wash.) 71, 1239–1243 (1974)Google Scholar
  21. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W., Adler, J.: Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (Lond.) 249, 74–77 (1974)Google Scholar
  22. Lewis, A.: Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells. Fed. Proc. 35, 51–53 (1976)Google Scholar
  23. Lewis, A.: Primary photophysical and photochemical processes in visual excitation. Biophys. Struct. Mechanism 3, in press (1977)Google Scholar
  24. Lewis, A., Spoonhover, J., Bogomolni, R. A., Lozier, R. H., Stoeckenius, W.: Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc. nat. Acad. Sci. (Wash.) 71, 4462–4466 (1974)Google Scholar
  25. Liebman, P. A., Entine, G.: Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185, 457–459 (1974)Google Scholar
  26. Lozier, R. H., Bogomolni, R. A., Stoeckenius, W.: Bacteriorhodopsin: A light-driven proton pump in Halobacterium halobium. Biophys. J. 15, 955–962 (1975)Google Scholar
  27. Matthews, R. G., Hubbard, R., Brown, P. K., Wald, G.: Tautomeric forms of metarhodopsin. J. gen. Physiol. 47, 215–240 (1963)Google Scholar
  28. Oesterhelt, D., Hess, B.: Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Europ. J. Biochem. 37, 316–326 (1973)Google Scholar
  29. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature, New Biol. (Lond.) 233, 149–152 (1971)Google Scholar
  30. Oesterhelt, D., Stoeckenius, W.: Functions of a new photoreceptor membrane. Proc. nat. Acad. Sci. 70, 2853–2857 (1973)Google Scholar
  31. Oesterhelt, D., Meentzen, M., Schuhmann, L.: Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Europ. J. Biochem. 40, 453–463 (1973)Google Scholar
  32. Ordal, G. W.: Control of tumbling in bacterial chemotaxis by divalent cation. J. Bact. 126, 706–711 (1976)Google Scholar
  33. De Pamphilis, M. L., Adler, J.: Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J. Bact. 105, 384–395 (1971a)Google Scholar
  34. De Pamphilis, M. L., Adler, J.: Attachment of flagellar basal bodies to the cell envelope: Specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membranes. J. Bact. 105, 396–407 (1971b)Google Scholar
  35. Racker, E., Stoeckenius, W.: Reconstitution of purple membrane vesicles cytalyzing light-driven proton uptake and adenosine triphosphate formation. J. biol. Chem. 249, 662–663 (1974)Google Scholar
  36. Silverman, M. R., Simon, M.: Flagellar rotation and the mechanism of bacterial motility. Nature (Lond.) 249, 73–74 (1974)Google Scholar
  37. Sumper, M., Reitmeier, H., Oesterhelt, D.: Biosynthesis of the purple membrane of halobacteria. Angew. Chem. Int. Ed. Engl. 15, 187–194 (1976)Google Scholar
  38. Wald, G.: The molecular basis of visual excitation. Nature (Lond.) 219, 800–807 (1968)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. Hildebrand
    • 1
  1. 1.Institut für NeurobiologieKernforschungsanlage JülichJülichFederal Republic of Germany

Personalised recommendations