On the Berry-Esseen theorem

  • William Feller
Article

Summary

The paper presents a simple derivation of a generalized Berry-Esseen theorem not requiring moments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: J. Wiley 1966.Google Scholar
  2. 2.
    Ibragimov, I. A., and L. V. Osipov: On an estimate of the remainder in Lindeberg's theorem. Theor. Probab. Appl. 11, 125–128 (1966).Google Scholar
  3. 3.
    Katz, M. L.: Note on the Berry-Esseen theorem. Ann. math. Statistics 34, 1107–1108 (1963).Google Scholar
  4. 4.
    Osipov, L. V.: Refinement of Lindeberg's Theorem. Theor. Probab. Appl. 11, 299–302 (1966).Google Scholar
  5. 5.
    — and V. V. Petrov: On an estimate of the remainder in the central limit theorem. Theor. Probab. Appl. 12, 281–286 (1967).Google Scholar
  6. 6.
    Petrov, V. V.: An estimate of the deviation of the distribution of a sum of independent random variables from the normal law. Doklady Akad. Nauk SSSR n. Ser. 160, 1013 to 1015 (1965).Google Scholar
  7. 7.
    Studnev, Yu. P.: A remark on the Katz-Petrov theorem. Theor. Probab. Appl. 10, 682–684 (1965).Google Scholar
  8. 8.
    —: On the role of Lindeberg's conditions. Dopovidi Akad. Nauk. Ukrain. RSR 3, 239–242 (1958). Select. Transl. math. Statist. Probab. 4, 303–306 (1963).Google Scholar
  9. 9.
    Zolotarev, V. M.: An absolute estimate of the remainder in the central limit theorem. Theor. Probab. Appl. 11, 95–105 (1966).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • William Feller
    • 1
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrinceton
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations