Ingenieur-Archiv

, Volume 52, Issue 6, pp 355–377 | Cite as

Fully developed turbulent flow in a pipe: an intermediate layer

  • N. Afzal
Article

Summary

The fully developed mean turbulent pipe flow is analysed at large Reynolds number by the method of matched asymptotic expansions. From the study of various limiting processes, in the sense of Kaplun, a crucial intermediate limit is identified whose transverse dimension is of the order of geometric mean of the transverse dimensions of the classical inner and outer layers. The asymptotic expansions in the three layers (inner, intermediate and outer) are matched by the Millikan's argument leading to two overlap domains where velocity distribution is logarithmic but their slopes could be different. The measurements show that the sustantial log regions do in fact exist in the two overlap domains and the ratio of their slopes is 2.03. The present theory describes the velocity profile over a greater range when compared to the classical theory. The predictions of Reynolds stress and turbulent energy production are in remarkably good argreement with the data for almost entire turbulent flow region from the beginning of the buffer layer to the axis oj pipe.

Voll entwickelte turbulente Rohrströmung: eine Zwischenschicht

Übersicht

Die voll entwickelte turbulente Rohrströmung wird für größere Reynolds-Zahlen mit der Methode der asymptotischen Entwicklungen untersucht, wobei eine wichtige Zwischenschicht identifiziert wird. Die asymptotischen Entwicklungen für drei Schichten (innere, mittlere und äußere) werden mit Hilfe von Übergangsbedingungen nach Millikan angepaßt. Messungen zeigen, daß wesentliche logarithmische Gebiete in Wirklichkeit vorhanden sind, wobei das Verhältnis ihrer Neigungen 2.03 ist. Die vorliegende Theorie beschreibt das Geschwindigkeitsprofil über einen größeren Bereich als die klassische Theorie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tennekes, H.: Outline of a second-order theory of turbulent pipe flow. A.I.A.A. J. 6 (1968) 1735–1740Google Scholar
  2. 2.
    Afzal, N.; Yajnik, K.: Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech. 61 (1973) 23–31Google Scholar
  3. 3.
    Afzal, N.: Millikan's argument at moderately large Reynolds numbers. Phys. Fluids 19 (1976) 600–602Google Scholar
  4. 4.
    Yajnik, K.: Asymptotic theory of turbulent shear flows. J. Fluid Mech. 42 (1970) 411–427Google Scholar
  5. 5.
    Bush, W. B.; Fendell, F. E.: Asymptotic analysis of turbulent channel and boundary layer flow. J. Fluid Mech. 56 (1972) 657–681Google Scholar
  6. 6.
    Bush, W. B.; Fendell, F. E.: Asymptotic analysis of turbulent channel flow for mean turbulent closure. Phys. Fluids 16 (1973) 1189–1197Google Scholar
  7. 7.
    Bush, W. B.; Fendell, F. E.: Asymptotic analysis of turbulent channel flow for mixing length length theory. SIAM, J. Appl. Maths. 26 (1974) 413–427Google Scholar
  8. 8.
    Lund, K. O.; Bush, W. B.: Asymptotic analysis of plane turbulent Couette-Poiseuille flows. J. Fluid Mech. 96 (1980) 81–104Google Scholar
  9. 9.
    Millikan, C. B.: A critical discussion of turbulent flow in channels and circular tubes. Proc. 5th Int. Congr. Appl. Mech. Cambridge 1938Google Scholar
  10. 10.
    Prandtl, L.: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 2 (1925) 136–139Google Scholar
  11. 11.
    Karman, T. Von: Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Maths. Physik, Klasse 58 (1938) 76Google Scholar
  12. 12.
    Monin, A. S.; Yaglom, A. M.: Statistical Fluid Mechanics, Vol. I, M.I.T. Press 1971Google Scholar
  13. 13.
    Townsend, A. A.: The structure of turbulent shear flows. Cambridge: University Press 1976Google Scholar
  14. 14.
    Malkus, W. V. R.: Turbulent velocity profile from stability criteria. J. Fluid Mech. 90 (1979) 401–414Google Scholar
  15. 15.
    Van Dyke, M.: Perturbation methods in fluid mechanics. New York: Parabolic Press 1975Google Scholar
  16. 16.
    Kaplun, S.: Singular perturbations and fluid mechanics. Academic Press 1967Google Scholar
  17. 17.
    Laufer, J.: The structure of turbulence in fully developed pipe flow. Nat. Advis. Comm. Aeronatuics. Rept. 1174 (1954)Google Scholar
  18. 18.
    Lawn, C. J.: The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech. 48 (1971) 477–505Google Scholar
  19. 19.
    Sreenivasan, K. R.; Prabhu, A.; Narasimha, R.; Shivaparasad, B. G.: Zero crossings in turbulent signals. Rept. 77 FM 13, Indian Institute of Science, Bangalore 1977Google Scholar
  20. 20.
    Uzkan, T.; Reynolds, W. C.: A shear-free turbulent boundary layer. J. Fluid Mech. 28 (1967) 803–821Google Scholar
  21. 21.
    Sternberg, J.: A theory for the viscous sublayer of a turbulent flow. J. Fluid Mech. 13 (1962) 241–271Google Scholar
  22. 22.
    Hunt, J. C. R.; Graham, J. M. R.: Free stream turbulence near plane boundaries. J. Fluid Mech. 84 (1978) 209–235Google Scholar
  23. 23.
    Townsend, A. A.: Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1961) 97–120Google Scholar
  24. 24.
    Perry, A. E.; Abell, C. J.: Asymptotic similarity of turbulent structure in smooth and rough walled pipes. J. Fluid Mech. 79 (1977) 785–791Google Scholar
  25. 25.
    Bullock, K. J.; Cooper, R. E.; Abernathy, F. H.: Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech. 88 (1978) 585–608Google Scholar
  26. 26.
    Willmarth, W. W.; Wooldridge, C. E.: Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14 (1962) 187–210Google Scholar
  27. 27.
    Tritton, D. J.: Some new correlation measurements in a turbulent boundary layer. J. Fluid Mech. 28 (1967) 439–462Google Scholar
  28. 28.
    Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W.: The structure of turbulent boundary layer. J. Fluid Mech. 30 (1967) 741–772Google Scholar
  29. 29.
    Offen, G. R.; Kline, S. J.: A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70 (1975) 209–228Google Scholar
  30. 30.
    Rao, K. N.; Narasimha, R.; Badri Narayanan, M. A.: The bursting phenomenon in a turbulent boundary layer. J. Fluid Mech. 48 (1971) 339–352Google Scholar
  31. 31.
    Bradshaw, P.: “Inactive” motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30 (1967) 241–258Google Scholar
  32. 32.
    Schubert, G.; Corcos, G. M.: The dynamics of turbulence near a wall according to a linear model. J. Fluid Mech. 29 (1967) 113–136Google Scholar
  33. 33.
    Landhal, M. T.: A wave guide model for turbulent shear flows. J. Fluid Mech. 29 (1967) 441–459Google Scholar
  34. 34.
    Long, R. R.; Chen, T. C.: Experimental evidence for the existence of the “Mesolayer” in turbulent systems. J. Fluid Mech. 105 (1981) 19–59Google Scholar
  35. 35.
    Afzal, N.: On the mesolayer theory of turbulent flows. J. Fluid Mech. (Submitted).Google Scholar
  36. 36.
    Afzal, N.: Turbulent boundary layer on a flat plate: An intermediate layer. To be published.Google Scholar
  37. 37.
    Afzal, N.: A sub-boundary layer within the two dimensional turbulent boundary layer. J. de Mecanique Theo. & Appl. (1982, to appear)Google Scholar
  38. 38.
    Coles, D.; Hirst, E. A.: Computations of turbulent boundary layer. Proc. 1968 AFOSR-IFP-Stanford Conference, Vol. 2: Data Compilation. Stanford University Press (1969)Google Scholar
  39. 39.
    Van Dyke, M.: Higher approximation in boundary layer. Part I: General analysis 14 (1962) 161–177Google Scholar
  40. 40.
    Narasimha, R.: A dialogue with D. Coles concerning the use of matched asymptotic expansions in turbulent flows. Rept. 77 FM 15, Bangalore: Indian Institute of Science, 1977Google Scholar
  41. 41.
    Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30 (1941) 301–305Google Scholar
  42. 42.
    Afzal, N.: Thermal turbulent boundary layer under strong adverse pressure gradient near separation. J. Heat Transfer 104 (1982) To appearGoogle Scholar
  43. 43.
    Afzal, N.: Effects of longitudinal curvature, vorticity and displacemnt for two dimensional turbulent boundary layers with heat and mass transfer. J. Mec. 14 (1975) 823–841Google Scholar
  44. 44.
    Afzal, N.; Narasimha, R.: Axisymmetric turbulent boundary layer along a circular cylinder at constant pressure. J. Fluid Mech. 74 (1976) 113–128Google Scholar
  45. 45.
    Nikuradse, J.: Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. Forsch. Arbeiten Ing.-Wesen No 356 (1932)Google Scholar
  46. 46.
    Coantic, M.: Contribution a l'etude de la structure de la turbulence dans une condiute de section circulaire. Docteur Es-Science Thesis. University Marseille France (1966)Google Scholar
  47. 47.
    Coantic, M.: Evolution, en fonction due nombre de Reynolds de la distribution des vitesses moyennes et turbulentes dans une conduite. C. R. Acad. Sci. Paris 264 (1967) 849–852Google Scholar
  48. 48.
    Perry, A. E.; Abell, C. J.: Scaling laws for pipe flow turbulence. J. Fluid Mech. 67 (1975) 257–271Google Scholar
  49. 49.
    Hisida, M.; Nagano, Y.: Structure of turbulent velocity and temperature fluctuations in fully developed pipe flow. J. Heat Trans. 101 (1979) 15–22Google Scholar
  50. 50.
    Schildknecht, M.; Miller, J. A.; Meier, G. E. A.: The influence of suction on the structure of turbulence in fully developed pipe flow. J. Fluid Mech. 90 (1979) 67–107Google Scholar
  51. 51.
    Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65 (1974) 439–459. See also Mitteilungen Max-Planck-Institut für Strömungsforschung Göttingen, Nr. 48, 1970Google Scholar
  52. 52.
    Ramaprian, B. R.; Tu, S. W.: An experimental study of oscillatory pipe flow at transitional Reynolds number. J. Fluid Mech. 100 (1980) 513–544Google Scholar
  53. 53.
    Bremhorst, K.; Walker, T. B.: Spectral measurements of turbulent momentum transfer in fully developed pipe flow. J. Fluid Mech. 61 (1973) 173–186Google Scholar
  54. 54.
    Schlichting, H.: Boundary Layer Theory. New York: Mc-Graw Hill 1968Google Scholar
  55. 55.
    Businger, J. A.; Wyngaard, J. C.; Isumi, Y.; Bradley, E. F.: Flux profile relationship in the atmospheric surface layer. J. Atmos. Sci. 28 (1971) 181–189Google Scholar
  56. 56.
    Ozicik, M. N.: Basis Heat Transfer. New York: Mc-Graw Hill 1977Google Scholar
  57. 57.
    Reichardt, H.: Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Maths. Mech. 31 (1951) 208–219Google Scholar
  58. 58.
    Hinze, J. O.: Turbulence. New York: Mc-Graw Hill 1975Google Scholar
  59. 59.
    Karman, T. Von: The analogy between skin friction and heat transfer. Trans. A.S.M.E. 61 (1939) 705–710Google Scholar
  60. 60.
    Pannell, W. T.; Sparrow, E. M.; Eckert, E. R. G.: Turbulent intensity and time mean velocity distributions in a low Reynolds number turbulent pipe flows. Int. J. Heat Mass Transfer 15 (1972) 1067–1074Google Scholar
  61. 61.
    Leuthensser, H. J.; Chu, V. H.: Experiments on plane Couette flow. J. Hyd. Div. Proc. ASCE 97 (1971) 1269–1284Google Scholar
  62. 62.
    Hinze, J. O.: Turbulent pipe flow. Mechanics of turbulence London: Gordan & Breach 1962Google Scholar
  63. 63.
    Virk, P.: Drag reduction fundamentals. A.I.Ch.E. Jour. 21 (1975) 4Google Scholar
  64. 64.
    Reischman, M. M.; Tiederman, W. G.: Laser-Doppler anemometer measurements in drag reducing channel flow. J. Fluid Mech. 70 (1975) 369–392Google Scholar
  65. 65.
    Sedov, L. I.; Ioselevich, V. A.; Pilipenko, V. N.; Vasetskaya, N. G.: Turbulent diffusion and degradation of polymer molecules in a pipe and boundary layer. J. Fluid Mech. 94 (1979) 561–576Google Scholar
  66. 66.
    Nikuradse, J.: Strömungsgesetze in rauhen Rohren. Forsch. Arbeiten. Ing. Wesen 361 (1933)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • N. Afzal
    • 1
  1. 1.Department of Mechanical EngineeringAligarh Muslim UniversityAligarhIndia

Personalised recommendations