An inequality for the weights of two families of sets, their unions and intersections

  • Rudolf Ahlswede
  • David E. Daykin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, L: Intersection theorems and a lemma of Kleitman. Discrete Math. (To appear)Google Scholar
  2. 2.
    Daykin, D.E.: A lattice is distributive iff ¦A¦¦B¦≦¦A∨B¦¦A∧B¦. Nanta Math. (To appear)Google Scholar
  3. 3.
    Daykin, D.E.: Poset functions commuting with the product and yielding Čebyčev type inequalities. C.N.R.S. Colloque, Paris (1976) (To appear)Google Scholar
  4. 4.
    Daykin, D.E., Kleitman, D.J., West. D.B.: The number of meets between two subsets of a lattice. J. Combinatorial Theory [submitted]Google Scholar
  5. 5.
    Greene, C, Kleitman, D.J.: Proof techniques in the theory of finite sets. M.A.A. Studies in Combinatorics. Editor G.C. Rota (To appear)Google Scholar
  6. 6.
    Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89–103 (1971)Google Scholar
  7. 7.
    Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)Google Scholar
  8. 8.
    Kleitman, D.J.: Families of non-disjoint subsets. J. Combinatorial Theory 1, 153–155 (1966)Google Scholar
  9. 9.
    Seymour, P.D.: On incomparable collections of sets. Mathematika Period. Sb. Pererodov Inostran Statei. 20, 208–209 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Rudolf Ahlswede
    • 1
  • David E. Daykin
    • 2
  1. 1.Fakultät für MathematikUniversität 4800 BielefeldFederal Republic of Germany
  2. 2.Department of MathematicsUniversity of ReadingReadingEngland

Personalised recommendations