Advertisement

Limit theorems for sums of dependent random variables occurring in statistical mechanics

II. Conditioning, multiple phases, and metastability
  • Richard S. Ellis
  • Charles M. Newman
  • Jay S. Rosen
Article

Summary

By the use of conditioning, we extend previously obtained results on the asymptotic behavior of partial sums for certain triangular arrays of dependent random variables, known as Curie-Weiss models. These models arise naturally in statistical mechanics. The relation of these results to multiple phases, metastable states, and other physical phenomena is explained.

Keywords

Stochastic Process Asymptotic Behavior Probability Theory Limit Theorem Statistical Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brout, R.H.: Phase transitions. In: Statistical Physics: Phase Transitions and Superfluidity, 3–103. Edited by M. Chretien, E.P. Gross, and S. Deser. New York: Gordon and Breach 1968Google Scholar
  2. 2.
    Chung, K.L.: A Course in Probability Theory (Second Edition). New York: Academic Press 1974Google Scholar
  3. 3.
    Ellis, R.S.: The Legendre transformation and concepts of entropy. U. Mass. preprint (1978)Google Scholar
  4. 4.
    Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. f. Wahrscheinlichkeitstheorie verw. Gebiete 44, 117–139 (1978)Google Scholar
  5. 5.
    Ellis, R.S., Newman, C.M.: Necessary and sufficient conditions for the GHS inequality with applications to probability and analysis. Trans. Amer. Math. Soc. 237, 83–99 (1978)Google Scholar
  6. 6.
    Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11, 790–795 (1970)Google Scholar
  7. 7.
    Huang, K.: Statistical Mechanics. New York: John Wiley and Sons 1963Google Scholar
  8. 8.
    Kac, M.: Mathematical mechanisms of phase transitions. In: Statistical Physics: Phase Transitions and Superfluidity, 241–305. Edited by M. Chretien, E.P. Gross, and S. Deser. New York: Gordon and Breach 1968Google Scholar
  9. 9.
    Penrose, O., Lebowitz, J.L.: Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Statist. Phys. 3, 211–236 (1971)Google Scholar
  10. 10.
    Penrose, O., Lebowitz, J.L.: Toward a rigorous molecular theory of metastability. In: Fluctuation Phenomena. Studies in Statistical Mechanics. Edited by J.L. Lebowitz and E. W. Montroll. Amsterdam: North HollandGoogle Scholar
  11. 11.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. New York: Oxford Univ. Press 1971Google Scholar
  12. 12.
    Thompson, C.J.: Mathematical Statistical Mechanics. New York: Macmillan 1972Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Richard S. Ellis
    • 1
  • Charles M. Newman
    • 2
  • Jay S. Rosen
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA
  3. 3.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA

Personalised recommendations