Advertisement

Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales

  • Jean Jacod
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Point Process Multivariate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benveniste, A., Jacod, J.: Systèmes de Lévy des processus de Markov. Invent. Math., 21, 183–198 (1973)Google Scholar
  2. 2.
    Boel, R., Varaiya, P., Wong, E.: Martingales on jump processes I, II. El. Res. Lab. Berkeley. M-407 and M-409 (1973)Google Scholar
  3. 3.
    Brémaud, P.: A martingale approach to point processes. PhD thesis. El. Res. Lab. Berkeley. M-345 (1972)Google Scholar
  4. 4.
    Brémaud, P.: The martingale theory of point processes over the real half-line. IRIA Int. Colloquium on Control Theory (1974). Lect. Notes in Economics and Math. Systems. Berlin, Heidelberg, New York: Springer (To appear)Google Scholar
  5. 5.
    Chou, C. S., Meyer, P. A.: La représentation des martingales relatives à un processus ponctuel discret. C. R. Acad. Sci. Paris, A, 278, 1561–1563 (1974)Google Scholar
  6. 6.
    Dellacherie, C.: Un exemple de la théorie génerale des processus, Sém. Proba. IV. Lecture Notes 124, Berlin, Heidelberg, New York: Springer 1970Google Scholar
  7. 7.
    Dellacherie, C.: Capacités et processus stochastiques. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  8. 8.
    Grigelionis, B.: On nonlinear filtering theory and absolute continuity of measures, corresponding to stochastic processes, Lecture Notes 330, Berlin, Heidelberg, New York: Springer 1973Google Scholar
  9. 9.
    Ito, K., Watanabe, S.: Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier XV, 13–30 (1965)Google Scholar
  10. 10.
    Jacod, J.: On the stochastic intensity of a random point process over the half-line. Tech. Report 51, Dept. Stat. Princeton University (1973)Google Scholar
  11. 11.
    Kailath, T.: The structure of Radon-Nikodym derivatives with respect to Wiener and related measures. Ann. Math. Statist. 42, 1054–1067 (1971)Google Scholar
  12. 12.
    Meyer, P. A.: Probability and potential. Waltham: Blaisdell 1966Google Scholar
  13. 13.
    Meyer, P. A.: Processus ponctuels selon K. Ito, Sém. Proba. V, Lecture Notes 191, Berlin, Heidelberg, New York: Springer 1971Google Scholar
  14. 13.
    Meyer, P. A.: Processus ponctuels selon K. Ito, Sém. Proba. V, Lecture Notes 191, Berlin: Springer 1971Google Scholar
  15. 14.
    Orey, S.: Radon-Nikodym derivative of probability measures: martingale methods. Dpt. Found. Math. Sc., Tokyo Un. of Education (1974)Google Scholar
  16. 15.
    Papangelou, F.: Integrability of expected increments of point processes and a related change of scale. Trans. Amer. Math. Soc. 165, 483–506 (1972)Google Scholar
  17. 16.
    Rubin, I.: Regular point processes and their detection. IEEE, Trans. Information Theory 18, 5 (1972)Google Scholar
  18. 17.
    Segall, A., Kailath, T.: Radon-Nikodym derivatives with respect to measures induced by discontinuous independent-increments processes. To appearGoogle Scholar
  19. 18.
    Segall, A., Kailath, T.: On the representation of martingales as stochastic integrals. To appearGoogle Scholar
  20. 19.
    Skorohod, A. V.: Random processes with independent increments, Rep. AD 645769, Foreign Technology DivisionGoogle Scholar
  21. 20.
    Snyder, D.: Filtering and detection for doubly stochastic Poisson processes. IEEE, Trans. Information Theory 18, 1 (1972)Google Scholar
  22. 21.
    van Schuppen, J. H., Wong, E.: Transformations of local martingales under a change of law. El. Res. Lab. Berkeley, M-385 (1973)Google Scholar
  23. 22.
    Watanabe, S.: On discontinuous additive functionals and Lévy measures of a Markov process. Japan. J. Math. 34, 53–79 (1964)Google Scholar

Copyright information

© Springer Verlag 1975

Authors and Affiliations

  • Jean Jacod
    • 1
  1. 1.Laboratoire de ProbabilitésUniversité de RennesRennesFrance

Personalised recommendations