Electrostatic capacity, heat flow, and brownian motion

  • Frank Spitzer


Stochastic Process Brownian Motion Heat Flow Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Carslaw, H. S., and J. C. Jaeger: Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press, 1959.Google Scholar
  2. [2]
    Doob, J. L.: A probability approach to the heat equation. Trans. Amer. math. Soc. 80, 216–280 (1955).Google Scholar
  3. [3]
    Dvoretzky, A., and P. Erdös: Some problems on random walk in spac. Proc. 2nd Berkeley Sympos. math. Statist. Probability. 353–368 (1951).Google Scholar
  4. [4]
    Hunt, G. A.: Some theorems concerning Brownian motion. Trans. Amer. math. Soc. 81, 294–319 (1956).Google Scholar
  5. [5]
    ItÔ, K., and H. P. McKean: Diffusion processes and their sample paths. Berlin: Springer 1964.Google Scholar
  6. [6]
    Joffe, A.: Sojourn time for stable processes. Thesis, Cornell U., 1959.Google Scholar
  7. [7]
    Kesten, H., and F. Spitzer: Ratio theorems for random walk (I). J. Analyse math. 11, 285–321 (1963).Google Scholar
  8. [8]
    Nevanlinna, R. H.: Eindeutige analytische Funktionen. 2nd ed. Berlin: Springer, 1953.Google Scholar
  9. [9]
    Spitzer, F.: Principles of random walk. Princeton: Van Nostrand 1964.Google Scholar
  10. [10]
    Whitman, W.: Thesis. Cornell U. 1964.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Frank Spitzer
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations